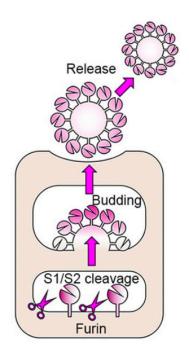
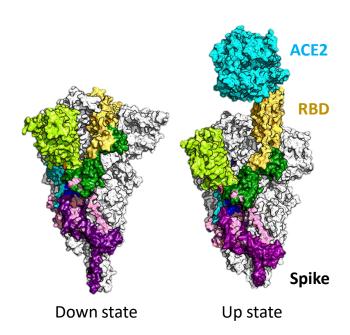


SARS-CoV-2 viral evolution: immune escape, transmission, pathogenicity

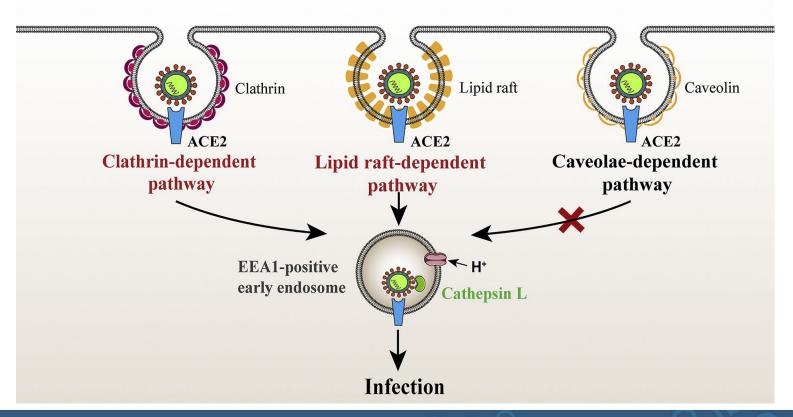
Arnaldo Caruso, MD
University of Brescia Medical School, Italy
arnaldo.caruso@unibs.it



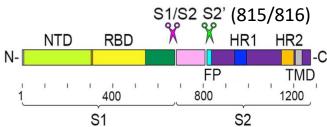

The Spike protein has two major cleavage S1/S2 S2' sites: HR2 NTD **RBD** HR1 S1/S2 (685/686) FΡ S2' (815/816) **TMD** 400 800 1200 **S1** S2 S1/S2 SARS-CoV-2 Delta variant S1/S2 Bat RaTG13 Bat ZC45 S1/S2← Furin Bat ZXC21 Pangolin Guangxi Pangolin Guandong C A S Y SARS-CoV Bat RmYN02 VGTNSIIAY - GICADGSLI----PVRPRNSS HCoV-NL63 HCoV-229E 2a HCoV-OC43 GYCVDYSK----INRRSRG 2a HCoV-HKU1 GFCVDYNSPSSSSSRRKR Beta 2b SARS-CoV 655 - GICASYHTVS-L-Beta 2b SARS-CoV-2 669 - GICASYQTQT-NSPRRARSVA

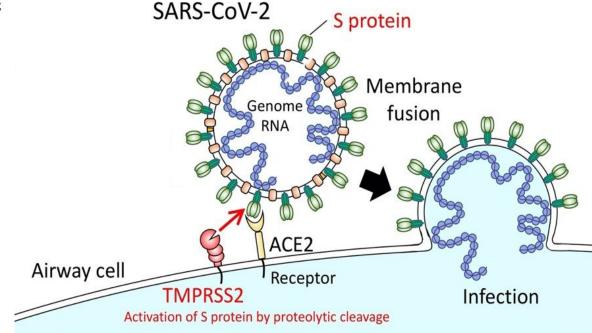
Takeda, Microbiology and immunology, 2021

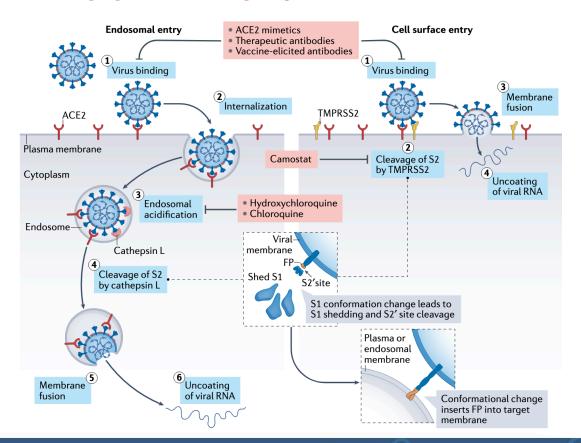
Spike conformation for ACE2 interaction

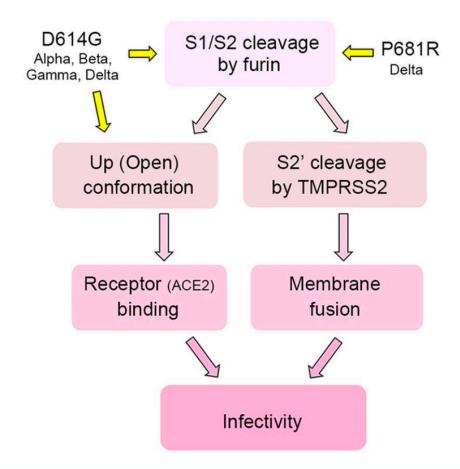


Takeda, Microbiology and immunology, 2021

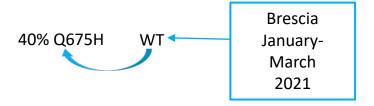


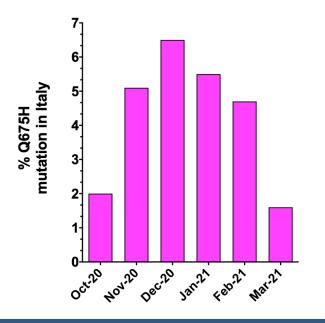

ACE2-mediated SARS-CoV-2 endocytosis

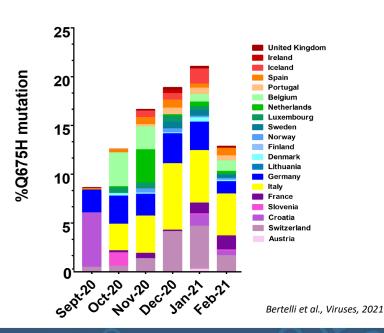

ACE2 and TMPRSS2-mediated SARS-CoV-2 fusion



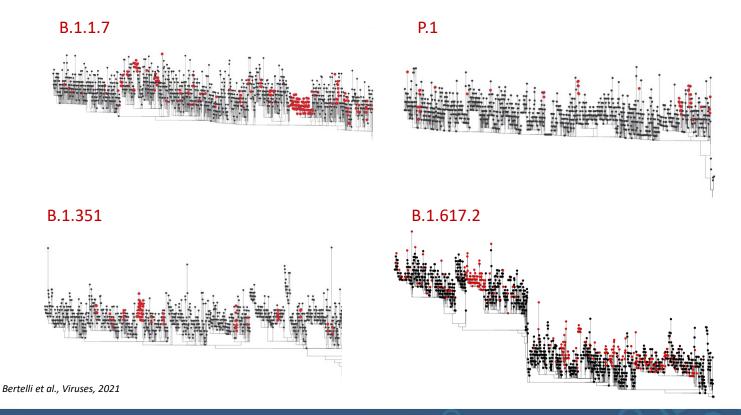
Entry pathways for SARS-CoV-2

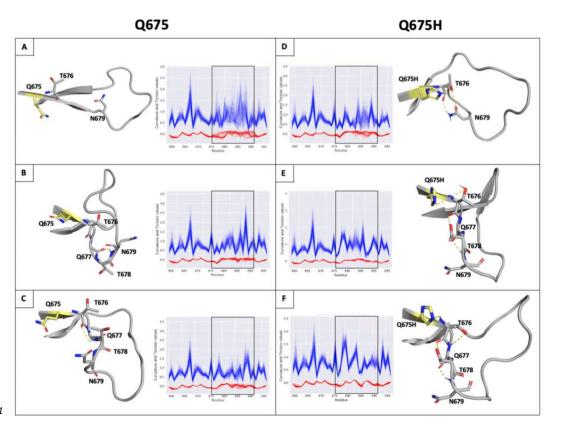



Jackson et al, Nat Rev, 2022



Reporting of SARS-CoV-2 Q675H mutation





Phylogenetic analysis shows that Q675H mutation arises by homoplasy events

Effects of Q675H on conformation of the furin binding motif

GLN to HIS mutation showed a positive (ΔΔG value is 0.665Kcal Kcal/mol) and a negative (ΔΔSVibENCoM value is –0.108 kcal.mol-1K-1) change in vibrational entropy energy between wild-type and mutant proteins.

Bertelli et al., Viruses, 2021

Cell

Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus

Korber B et al, 2020

CORONAVIRUS

Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England

Davies et al., Science **372**, eabg3055 (2021) 9 April 2021

> SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity

Ramanathan M et al, Lancet Infect Dis, 2021

Received: 28 January 2021 Revised: 1 March 2021 Accepted: 4 March 2021 DOI: 10.1002/icp.30367 RESEARCH ARTICLE

Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data

Abbas Khan¹ | Tauqir Zia² | Muhammad Suleman³ | Taimoor Khan¹ Syed Shujait Ali³ | Aamir Ali Abbasi⁴ | Anwar Mohammad⁵ | Dong-Qing Wei^{1,6,7} o

S1/S2 cleavage

Received: 21 May 2021

Up (Open) conformation

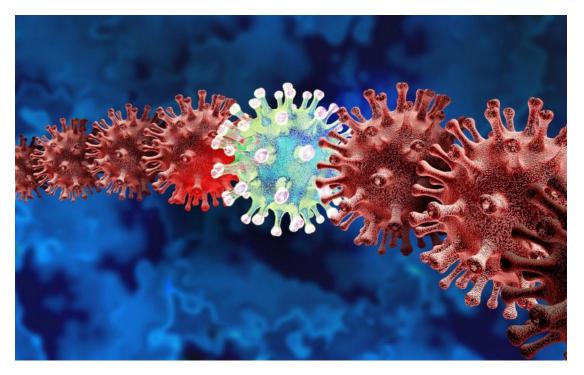
Receptor (ACE2) binding

Revised: 11 June 2021 Accepted: 8 July 2021

SARS-CoV-2 B.1.617 Indian variants: Are electrostatic potential changes responsible for a higher transmission rate?

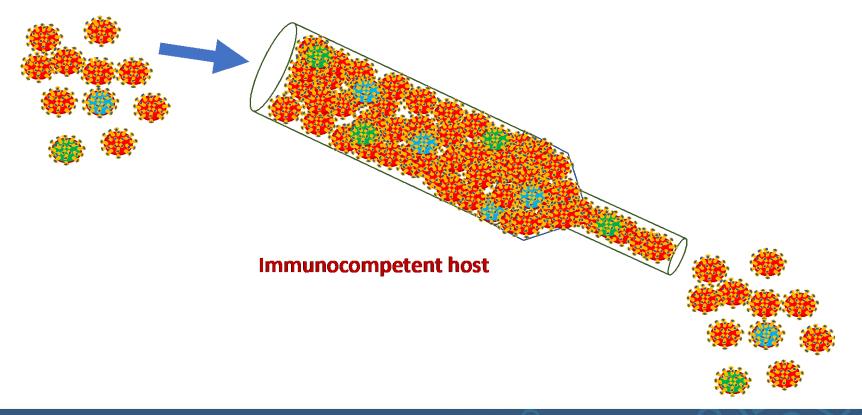
Membrane fusion

WILEY

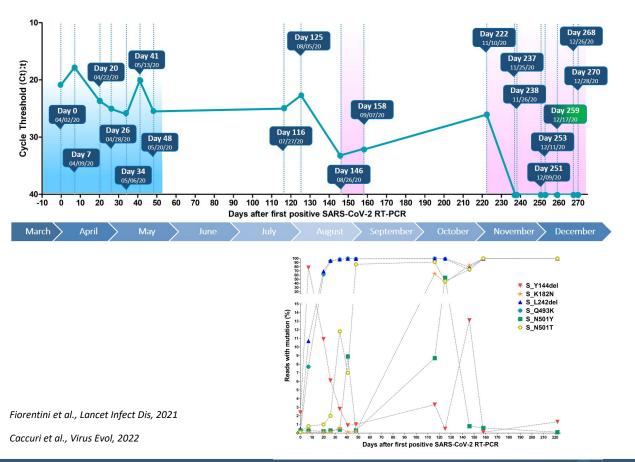

Article

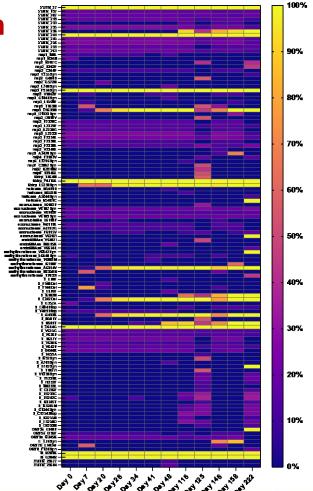
Improved Binding Affinity of Omicron's Spike Protein for the Human Angiotensin-Converting Enzyme 2 Receptor Is the Key behind Its Increased Virulence

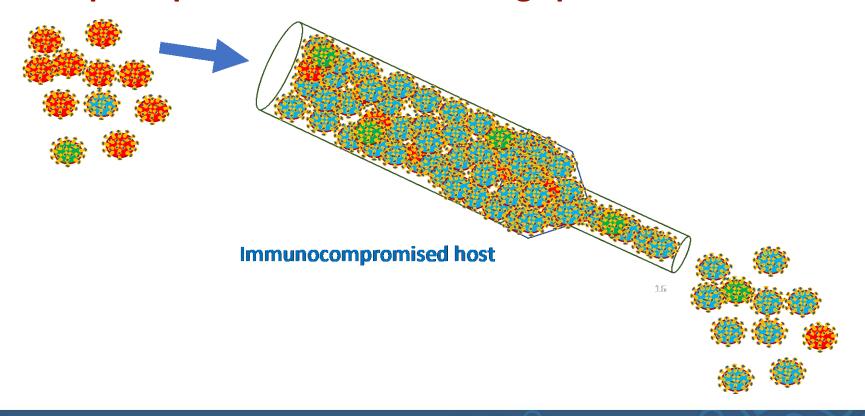
Rajender Kumar 1, Natarajan Arul Murugan 2,*,† and Vaibhav Srivastava 1,*


Viral evolution is a long game: How does it occur?

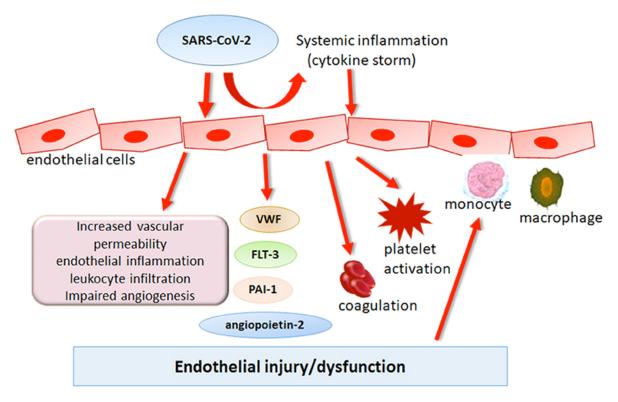
The Intra-host evolution




The bottleneck-mediated quasispecies restriction during spread of virions


SARS-CoV-2 intra-host evolution

The bottleneck-mediated quasispecies restriction during spread of virions



Conclusion I

- SARS-CoV-2 possesses two evolutionary sites
 - The first is represented by RBD domain which is directly involved in ACE2 binding. Its evolution enhances viral entry
 - The second one is represented by the furin cleavage site. Its evolution increases viral adaptation to the human host
 - Both the sites contribute to a better global viral fitness
- SARS-CoV-2 evolution occurs in immunocompromised human hosts

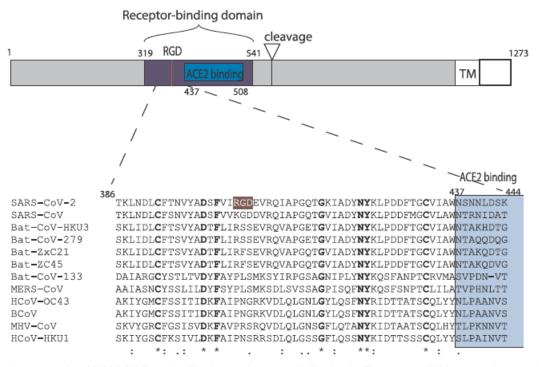
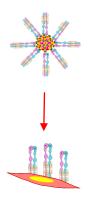
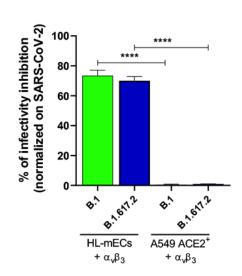
Role of SARS-CoV-2 in endothelial dysregulation

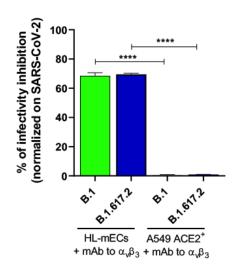
Adapted by Liu and Zhang, Front Med, 2021

Changes in the Receptor Binding Domain (RBD) of SARS-CoV-2 VOCs

B.1 B.1.1.7 B.1.351 P.1 B.1.525 B.1.621 B.1.617.2 B.1.1.529	VQPTESIVRFP VQPTESIVRFP VQPTESIVRFP VQPTESIVRFP VQPTESIVRFP VQPTESIVRFP	PHITNLCPFGEVER PHITNLCPFGEVER PHITNLCPFGEVER PHITNLCPFGEVER PHITNLCPFGEVER PHITNLCPFGEVER	IATRFASVYAWNR IATRFASVYAWNR IATRFASVYAWNR IATRFASVYAWNR IATKFASVYAWNR IATRFASVYAWNR	KRISNCVADYSV KRISNCVADYSV KRISNCVADYSV KRISNCVADYSV KRISNCVADYSV KRISNCVADYSV	Lynsasfsti Lynsasfsti Lynsasfsti Lynsasfsti Lynsasfsti Lynsasfsti	FKCYGVSPTKI FKCYGVSPTKI FKCYGVSPTKI FKCYGVSPTKI FKCYGVSPTKI FKCYGVSPTKI	MDLCFTNVYAL MDLCFTNVYAL MDLCFTNVYAL MDLCFTNVYAL MDLCFTNVYAL MDLCFTNVYAL MDLCFTNVYAL MDLCFTNVYAL	OSFVIRGIEVRQI OSFVIRGIEVRQI OSFVIRGIEVRQI OSFVIRGIEVRQI OSFVIRGIEVRQI OSFVIRGIEVRQI	0 420 APGQTGKIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGTIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGKIADYNYKLPDDI APGQTGNIADYNYKLPDDI	FFFFFF
B.1 B.1.1.7 B.1.351 P.1 B.1.525 B.1.621 B.1.617.2 B.1.1.529	TGCVIAWNSNN TGCVIAWNSNN TGCVIAWNSNN TGCVIAWNSNN TGCVVAWNSNN TGCVIAWNSNN TGCVIAWNSNN	ILDSKVGGNYNYL ILDSKVGGNYNYL ILDSKVGGNYNYL ILDSKVGGNYNYL ILDSKVGGNYNYL ILDSKVGGNYNYL ILDSKVGGNYNYL ILDSKVGGNYNYL	RLFRKSNLKPFE RLFRKSNLKPFE RLFRKSNLKPFE RLFRKSNLKPFE RLFRKSNLKPFE RLFRKSNLKPFE RLFRKSNLKPFE	RDISTEIYQAGS RDISTEIYQAGS RDISTEIYQAGS RDISTEIYQAGS RDISTEIYQAGS RDISTEIYQAGS RDISTEIYQAGS RDISTEIYQAGS	TPCNGVEGFI TPCNGVKGFI TPCNGVKGFI TPCNGVKGFI TPCNGVKGFI TPCNGVKGFI KPCNGVEGFI	NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE NCYFPLQSYGE	CELNGAGACE, COLLAGACE,	(RVVVLSFELHA (RVVVLSFELHA (RVVVLSFELHA (RVVVLSFELHA (RVVVLSFELHA (RVVVLSFELHA (RVVVLSFELHA (RVVVLSFELHA	0 530 PATVCGPKKSTNLVKNKCV PATVCGPKKSTNLVKNKCV PATVCGPKKSTNLVKNKCV PATVCGPKKSTNLVKNKCV PATVCGPKKSTNLVKNKCV PATVCGPKKSTNLVKNKCV PATVCGPKKSTNLVKNKCV	V V V V

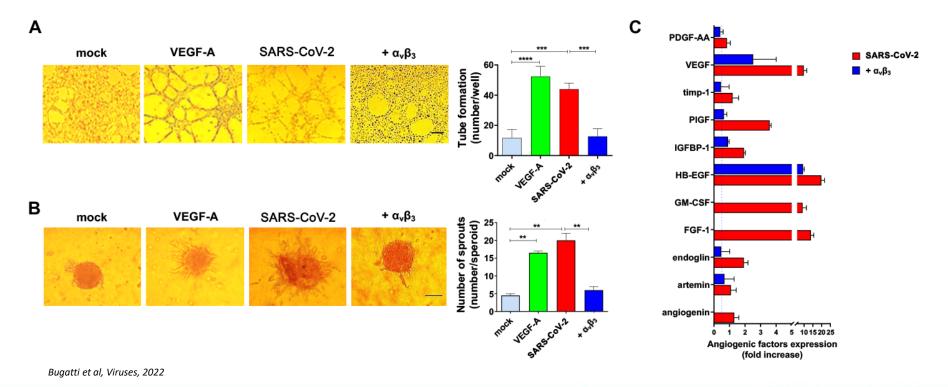
C.J. Sigrist, et al. Antiviral Research 177 (2020) 104759

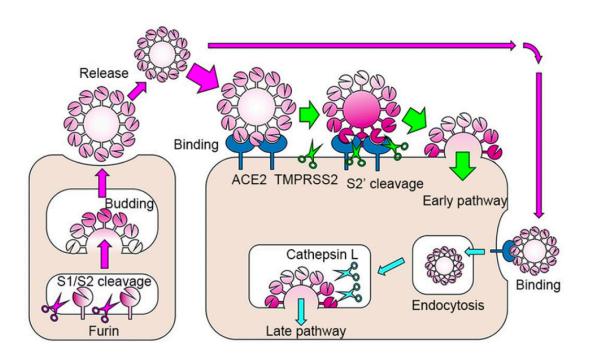




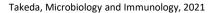

Fig. 2. Schematic representation of SARS-CoV-2 S-protein with a focus on the receptor-binding domain. The sequences of 12 betacoronavirus were aligned using MAFFT (Katoh et al., 2019). The receptor-binding domain and the ACE2 receptor-binding region are colored in blue and light blue, respectively. The RGD motif of SARS-CoV-2 is highlighted in color. Numbers refer to the SARS-CoV-2 spike protein sequence.

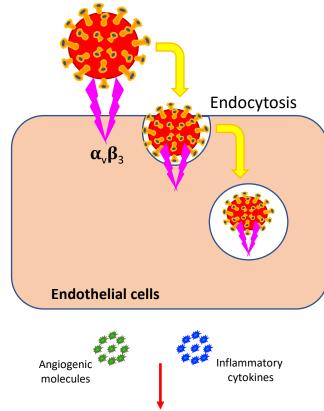
$\alpha_v \beta_3$ integrin inihibits SARS-CoV-2 entry into HL-mECs

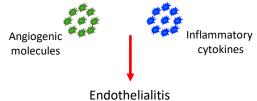
Virus + integrin $\alpha_v \beta_3$ were used to infect HL-mECs HL-mECs were pre-treated with mAb against $\alpha_{\rm v}\beta_3$ and then infected with SARS-CoV-2

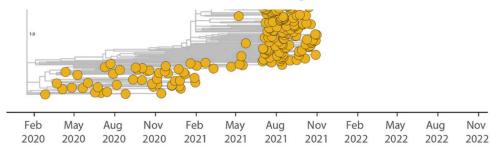




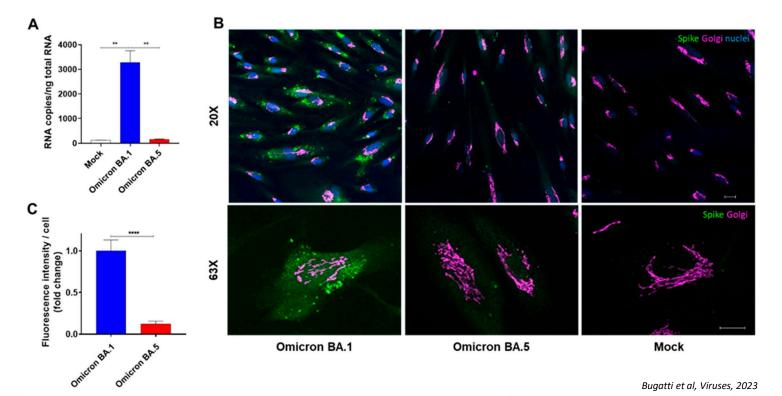

Bugatti et al, Viruses, 2022


$\alpha_{\rm v}\beta_{\rm 3}$ counteracts SARS-CoV-2 proangiogenic effects



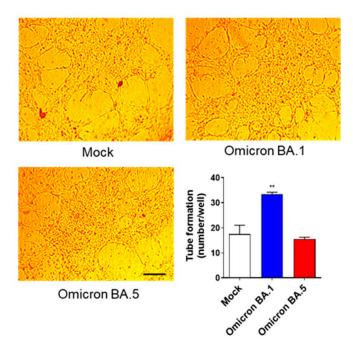


Mutations in the Integrin-Binding RGD Motif of SARS-CoV-2 Variants

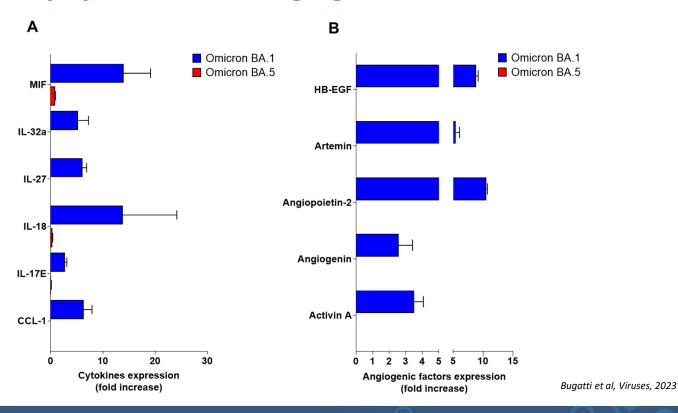

Article

BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection

potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to <u>D405N</u> and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The

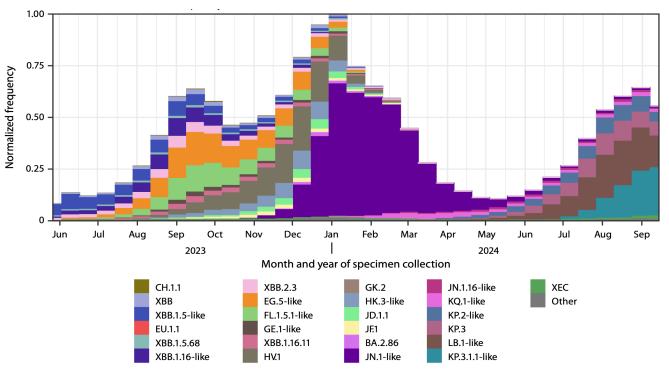


The D405N Mutation in the Spike Protein of SARS-CoV-2 Omicron BA.5 Inhibits Spike/Integrins Interaction and Viral Infection of ECs


SARS-CoV-2 BA.5 Does Not Trigger Angiogenesis

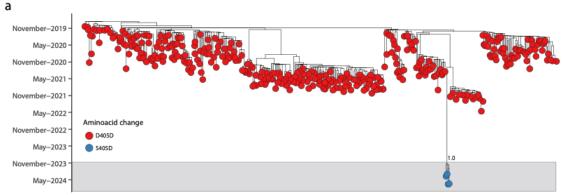
Bugatti et al, Viruses, 2023

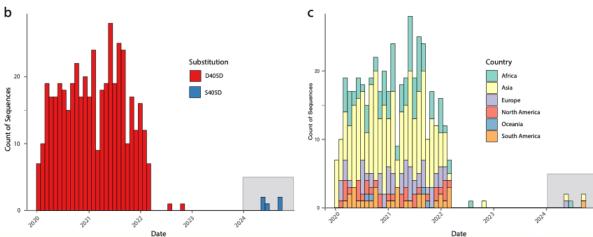
SARS-CoV-2 Omicron BA.5 does not induce the Release of inflammatory cytokines and angiogenic molecules from HL-mECs



Conclusion II

- SARS-CoV-2 enters into ACE2-negative endothelial cells through integrins
- This entry is mediated by an RGD motif on SARS-CoV-2 Spike
- HL-mEC infection promotes the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype
- D405N/S mutation induces lack of Spike/integrins interaction inhibiting HL-mECs infection of and dysfunction.


Newly emerged SARS-CoV-2 variants



Homoplasy event?

S405D-carrying sequences were sampled across diverse regions, with specific occurrences in Africa (lineage JN.1.11.1, sampled on 2024-06-19), Asia (lineages JN.1.17 on 2024-05-08 and MB.1.1 on 2024-09-13), Europe (lineage JN.1.11, sampled on 2024-05-27), and South America (lineage JN.1.11, sampled on 2024-09-08).

Conclusion III

- The RGD motif mutated to RGN/RGS under immunological pressure leading to a loss-of-function on endothelial cells (less virulent variants!)
- The back mutation from RGN/RGS to RGD may lead to a dramatic gain-of-function of SARS-CoV-2 promoting endothelialitis
- A continuous genomic surveillance is crucial to deepen our understanding in SARS-CoV-2 evolution and prevent diffusion of new virulent strains

Section of Microbiology University of Brescia

Unit of Medical Statistics and Molecular Epidemiology
Campus Biomedico
Rome

ITB-CNR Milan

Thank you for your attention!

