Gli ultimi studi che potrebbero cambiare la pratica clinica quotidiana

Il paziente immunocompromesso non HIV

Renato Pascale

Università di Bologna IRCCS Policlinico Sant'Orsola UO Malattie Infettive

Outline

Viral Infections

Bacterial Infections

Fungal Infections

SOT

HSCT

CMV new drugs

Drug	Mode of action	Advantages	Limitations
Maribavir	Inhibition of viral UL97 kinase	Well tolerated Oral formulation	Dysgeusia in one-third of patients No intravenous formulation Reduced efficacy with high viral loads Poor penetration to CNS/retina Drug-drug interactions Recurrences after successful treatment Resistances
Letermovir	Inhibition of viral terminase complex	Well tolerated Oral and intravenous formulation	Approved only for prophylaxis Reduced efficacy with high viral loads Relevant interaction with cyclosporine, sirolimus, tacrolimus Recurrences after successful treatment Resistances

Maribavir for Refractory or Resistant Cytomegalovirus Infections in Hematopoietic-cell or Solid-organ Transplant

Recipients: A Randomized, Dose-ranging, Do Phase 2 Study

Genovefa A. Papanicolaou, Fernanda P. Silveira, Amelia A. Langston, Marcus R. Pereira, Robin K. Avery, Marc Ukr Jingyang Wu,7 Michael Boeckh,8 Francisco M. Marty,9,4 and Stephen Villano6,4

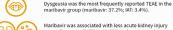
¹Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York; ²The Department of Medicine, University of Pittsburgh Me ³The Winship Cancer Institute, Atlanta, Georgia; ⁴Department of Medicine, Columbia University Medical Center, New York, New York; ⁵Johns Hopkins, ⁶Shire Pharmaceuticals, Wayne, Pennsylvania; ⁷Shire Pharmaceuticals, Lexington, Massachusetts; ⁸The Fred Hutchinson Cancer Research Center, Sea Hospital Boston Massachusetts

Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results from a Phase 3 Randomized Clinical Trial

Robin K. Avery, Sophie Alain, Barbara D. Alexander, Emily A. Blumberg, Roy F. Chemaly, Catherine Cordonnier, Rafael F. Duarte, Diana F. Florescu, Nassim Kamar, Deepali Kumar, Johan Maertens, Francisco M. Marty, Genovefa A. Papanicolaou, Fernanda P. Silveira, Oliver Witzke, Jingyang Wu, Aimee K. Sundberg, and Martha Fournier, for the SOLSTICE Trial Investigators

control at Week 8, with maintenance through Week 16 compared with IAT.

INTRODUCTION RESULTS 352 patients were randomized (maribavir, n=235; IAT, n=117) This was a phase 3, multicenter, randomized, open-label, active-controlled study to assess the efficacy and safety of maribavir compared with IAT in HCT and SOT recipients with CMV infections refractory to most recent treatment, with or without resistance to ganciclovir/valganciclovir, foscarnet. and/or cidofovir **PRIMARY ENDPOINT (WEEK 8)** STUDY DESIGN 131/235 p<.001 28/117 For 12 weeks after treatment Adjusted difference (95% CI): 32.8 (22.80-42.74) A significantly higher proportion of patients treated with maribavir achieved the primary endpoint of confirmed CMV viremia clearance at Week 8 compared for 8 weeks 400 mg orally twice daily **KEY SECONDARY ENDPOINT (WEEK 16)** Maribavir n/N 44/235 p=.013 STUDY ENDPOINTS The primary endpoint was confirmed CMV viremia clearance at the 12/117 end of Week 8 (regardless of premature treatment discontinuation). Adjusted difference (95% CI): 9.5 (2.02-16.88) The key secondary endpoint was a composite of confirmed CMV viremia clearance and symptom control at the end of A greater proportion of patients treated with maribavir achieved the Week 8, maintained through Week 16 after receiving exclusively composite key secondary endpoint of CMV viremia clearance and symptom


SAFETY

Median (range) duration of exposure was 57 (2-64) days with maribavir and 34 (4-64) days with IAT.

Fewer patients discontinued maribavir than IAT due to TEAEs (13.2% vs 31.9%).

maribavir group (maribavir: 37.2%; IAT: 3.4%). Maribavir was associated with less acute kidney injury

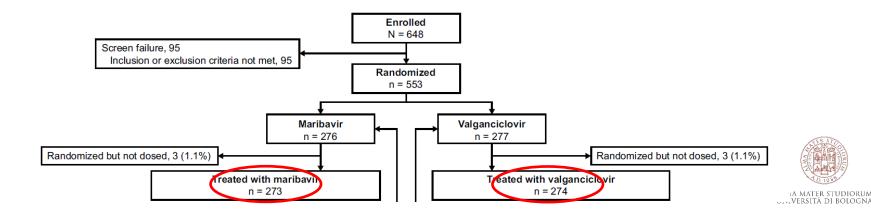
versus foscarnet (8.5% vs 21.3%) and neutropenia versus valganciclovir/ganciclovir (9.4% vs 33.9%).

One patient per treatment group had fatal treatment-related TEAEs.

CONCLUSIONS

Maribavir was superior to IAT for cytomegalovirus viremia clearance, and viremia clearance plus symptom control, with maintenance of these effects post-therapy in transplant recipients with refractory cytomegalovirus infections with or without resistance.

Maribavir demonstrated an improved safety profile versus valganciclovir/ganciclovir for myelotoxicity and versus foscarnet for nephrotoxicity, with fewer patients discontinuing maribavir

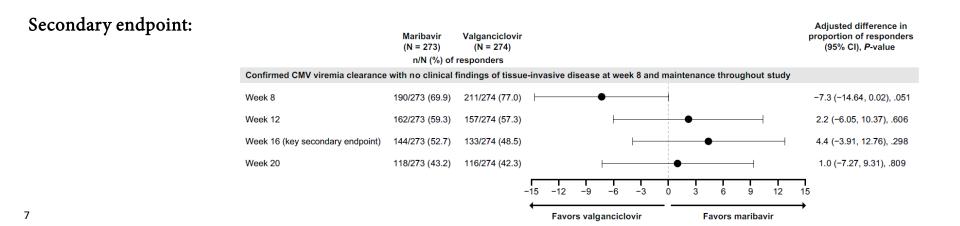

The availability of an orally bioavailable therapy without the tolerability issues associated with current therapies may confer patient management benefits.

CMV, cytomegalovirus; HCT, hematopoietic-cell transplant; IAT, investigator-assigned therapy; SOT, solid-organ transplant; TEAE, treatment-emergent adverse event ClinicalTrials.gov: NCT02931539 This study was funded by Takeda Development Center Americas, Inc., Lexington, MA

study-assigned treatment.

Treatment for First Cytomegalovirus Infection Post-Hematopoietic Cell Transplant in the AURORA Trial: A Multicenter, Double-Blind, Randomized, Phase 3 Trial Comparing Maribavir With Valganciclovir Papanicolau G et al. Clin Infect Dis 2024 20;78(3):562-572.

- Study design: multicenter, double-blind, phase 3 study,
- ❖ Population: pts with first asymptomatic CMV infection post-HCT
- ❖ Intervention: randomized 1:1 to maribavir 400 mg twice daily or valganciclovir for 8 weeks with 12 weeks of follow-up.
 - The primary endpoint was confirmed CMV viremia clearance at week 8 (primary hypothesis of non inferiority margin of 7.0%).
 - Secondary endpoint: composite endpoint: primary endpoint + no findings of CMV tissue-invasive disease at week 8 through week 16.



Treatment for First Cytomegalovirus Infection Post-Hematopoietic Cell Transplant in the AURORA Trial: A Multicenter, Double-Blind, Randomized, Phase 3 Trial Comparing Maribavir With Valganciclovir

Papanicolau G et al. Clin Infect Dis 2024 20;78(3):562-572.

Primary endpoint:

- ❖ Confirmed CMV viremia clearance **At week 8**:
 - ✓ Maribavir (69.6%) vs Valganciclovir (77.4%) (adj diff: -7.7%; 95% CI: -14.98, -.36). The criterion for noninferiority of maribavir to valganciclovir for the primary endpoint was not met
- For patients with high viral load, acute GVHD, and those who had undergone T-cell depletion at baseline, the treatment effect of maribavir was below the group average.

Treatment for First Cytomegalovirus Infection Post-Hematopoietic Cell Transplant in the AURORA Trial: A Multicenter, Double-Blind, Randomized, Phase 3 Trial Comparing Maribavir With Valganciclovir

Papanicolau G et al. Clin Infect Dis 2024 20;78(3):562-572.

Treatment-Emergent Resistance

Maribavir 8.8% (24/273)

87.5% (21/24) did not achieve the primary endpoint

- 19 R to only maribavir
- 1 R to only valganciclovir
- 1 R to both maribavir and valganciclovir

Valganciclovir 2.9% (8/274)

50% (4/8) did not achieve the primary endpoint

- 3 R to only valganciclovir
- 1 R to both maribavir and valganciclovir

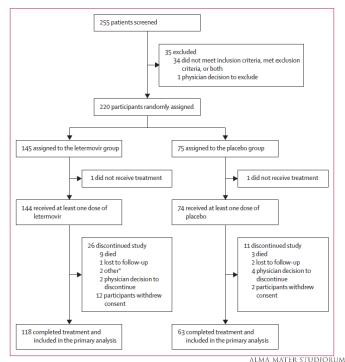
Supplementary Table 2. Identified Treatment-Emergent^a Known or Suspected RASs to Conventional Anti-CMV Therapies^b

	Associated	Valganciclovir	Maribavir (N=273) n (%)	
	resistance	(N=274) n (%)		
Single GCV/FOS/CDV	RAS in only pUL97			
M460I	GCV	1 (0.4)	0	
M460V	GCV	1 (0.4)	0	
C480F	GCV (also MBV)	0	1 (0.4)	
C480R	GCV (also MBV)	1 (0.4)	0	
H520Q	GCV	1 (0.4)	0	
C592G	GCV	0	1 (0.4)	
A594V	GCV	2 (0.7)	0	
L595S	GCV	1 (0.4)	0	
Multiple GCV/FOS/CD	V RAS in only pUL97			
A594P+C603W	Ganciclovir	1 (0.4)	0	

Supplementary Table 3. Identified Treatment-Emergent^a Known or Suspected RASs to Maribavir^b

	Valganciclovir	Maribavir
	(N=274) n (%)	(N=273) n (%)
Single maribavir RAS in only pUL97		
T409M	0	12 (4.4)
H411Y	0	6 (2.2)
Multiple maribavir RASs in only pUL97		
T409M+H411Y	0	5 (1.8)
T409M+C480F	0	1 (0.4)
T409M+C480R	1 (0.4)	0

NIVERSITÀ DI BOLOGN


Efficacy and safety of extended duration letermovir prophylaxis in recipients of haematopoietic stem-cell transplantation at risk of cytomegalovirus infection: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial

- Aim: the efficacy and safety of 200 days letermovir prophylaxis for clinically significant CMV infection following HSCT
- ❖ Study design: multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at 32 sites in 6 European and USA countries

* Population:

- ✓ CMV+ HSCT recipients receiving letermovir prophylaxis for up to 100 days following HSCT randomly assigned (2:1) to receive either an additional 100 days or 100 days of a placebo comparator for letermovir
- ❖ The primary efficacy endpoint: was the proportion of participants to week 28 (200 days after HSCT) with clinically significant cytomegalovirus infection.

Russo D et al. Lancet Haematology 2024

UNIVERSITÀ DI BOLOGNA

Efficacy and safety of extended duration letermovir prophylaxis in recipients of haematopoietic stem-cell transplantation at risk of cytomegalovirus infection: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial

Russo D et al. Lancet Haematology 2024

- Results: 220 patients enrolled:
 - ❖ 145 (66%) in the letermovir group vs 75 (34%) in the placebo group.

4 (3%) of 144 **letermovir group**Developed clinically CMV infection

14 (**19%**) of 74 **placebo group** developed clinically CMV infection

treatment difference: **-16,1%** (95% CI -25,8 to – 6,5]; p=0,0005).

Key secondary endpoints								
Clinically significant cytomegalovirus infection§								
From week 14 to week 38	19 (13%)	14 (19%)	-5·7 (-16·8 to 5·4)	0.16				
From week 14 to week 48	19 (13%)	14 (19%)	-5·7 (-16·8 to 5·4)	0.16				
Failures¶ from week 14 to week 28	3 (2%)	12 (16%)	-14·1 (-23·3 to -5·0)	0.0012				
Initiation of PET based on documented cytomegalovirus viraemia	1 (<1%)	11 (15%)						
Discontinued from study with cytomegalovirus viraemia before week 28	2 (1%)	1 (1%)						
All-cause mortality								
From week 14 to week 28	3 (2%)	1 (1%)	0·7 (−3·8 to 5·3)	0.62				
From week 14 to week 48	12 (8%)	6 (8%)	0·3 (-7·9 to 8·4)	0.53				

Safety	Letermovir group (n=144)	Placebo group (n=74)	Difference (95% CI)*
Any adverse event	128 (89%)	69 (93%)	-4·4 (-11·8 to 4·7)
GVHD	43 (30%)	23 (31%)	-1·2 (-14·5 to 11·2)
Diarrhoea	17 (12%)	9 (12%)	-0·4 (-10·7 to 8·2)
Nausea	16 (11%)	13 (18%)	-6·5 (-17·6 to 2·9)
Pyrexia	13 (9%)	9 (12%)	-3·1 (-13·3 to 5·0)
Decreased appetite	6 (4%)	9 (12%)	-8·0 (-17·8 to -0·8)
Data are n (%), unless otherwise indicated	d. Most common adverse events	defined as adverse e	vents of any severity that

Data are n (%), unless otherwise indicated. Most common adverse events defined as adverse events of any severity that were reported in at least 10% of participants in either treatment group. Information on AE grades was not collected in this trial. GVHD=graft-versus-host disease. *Based on Miettinen and Nurminen's method.¹⁰

Table 3: Adverse events in the safety population

JAMA°

QUESTION Is letermovir noninferior to valganciclovir prophylaxis for cytomegalovirus (CMV) disease prevention in high-risk adult CMV-seronegative kidney transplant recipients who receive an organ from a CMV-seropositive donor?

CONCLUSION Letermovir was noninferior to valganciclovir for prophylaxis of CMV disease over 52 weeks among adult CMV-seronegative recipients who received an organ from a CMV-seropositive donor.

POPULATION

422 Men **167** Women

649

Adult CMV-seronegative kidney transplant recipients receiving an organ from a CMV-seropositive donor

Mean age: 50 years

LOCATIONS

94 Hospitals worldwide

INTERVENTION

Letermovir

480 mg of letermovir orally daily, 400 mg of acyclovir twice daily, and a valganciclovir placebo

Valganciclovir

900 mg of valganciclovir orally daily with letermovir and acyclovir placebos

PRIMARY OUTCOME

CMV disease through 52 weeks after transplant

FINDINGS

Patients with committee-confirmed CMV through week 52

Letermovir

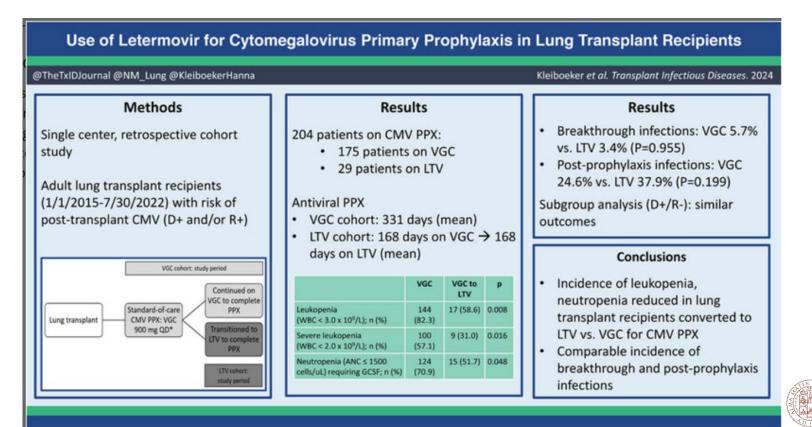
10.4% (30 of 289 patients)

Valganciclovir

11.8% (35 of 297 patients)

Letermovir was noninferior to valganciclovir:

Stratum-adjusted difference, -1.4% (95% CI, -6.5% to 3.8%)


© AMA

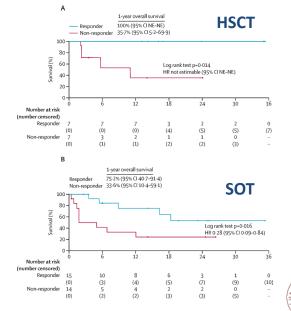
Limaye AP, Budde K, Humar A, et al. Letermovir vs valganciclovir for prophylaxis of cytomegalovirus in high-risk kidney transplant recipients: a randomized clinical trial. JAMA. Published online June 6, 2023. doi:10.1001/jama.2023.9106

Use of letermovir for cytomegalovirus primary prophylaxis in lung transplant recipients.

Kleiboeker HL et al. Transpl Infect Dis. 2024 Oct;

ERSITÀ DI BOLOGNA

Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant recipients with Epstein-Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial


Mahadeo KM et al. Lancet Oncol 2024;25:376-387

❖ Patients with EBV-PTLD relapsed and/or refractory to rituximab after HSCT (n = 14) or to rituximab ± chemotherapy after SOT (n = 29) received three tabelecleucel infusions (2 × 10⁶ cells per Kg) based on a partially matched HLA profile (restriction switch allowed)

❖ Median number of cycles 3 (IQR 2-4) in HSCT, and 2 (IQR 1-3) in SOT

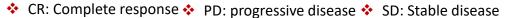
	HSCT (n=14)	SOT (n=29)	All (n=43)
Objective response	7 (50%, 23–77)	15 (52%, 33–71)	22 (51%, 36–67)
Complete response	6 (43%)	6 (21%)	12 (28%)
Partial response	1 (7%)	9 (31%)	10 (23%)
Stable disease	3 (21%)	2 (7%)	5 (12%)
Progressive disease	2 (14%)	7 (24%)	9 (21%)
Not evaluable	2 (14%)	5 (17%)	7 (16%)
Median response duration	23 months	15.2 months	23 months

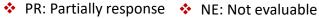
❖ Treatment-related AE of any grade in 29%, grade 3-4 in 4% of patients (erythematous rash, hypotension and hypoxia in 1 patient each)

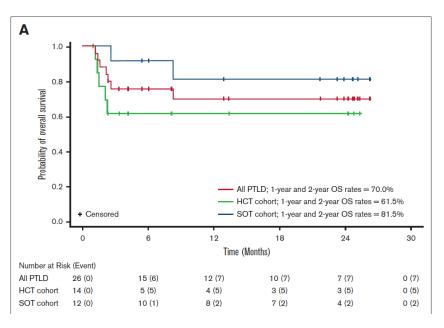
Tabelecleucel for EBV+ PTLD after allogeneic HCT or SOT in a multicenter expanded access protocol Nikiforow S. et al. Blood Advances, April 2024

- ❖ Multicenter expanded access protocol in 14 HSCT and 12 SOT recipients treated with tabelecleucel for EBV+ PTLD relapsed/refractory (R/R) to rituximab with/without chemotherapy.
- ❖ The Median number of cycles 3 (IQR 2-4) in HSCT, and 2 (IQR 1-3) in SOT.
- Patients were treated with intravenous tabelecleucel on days 1, 8, and 15, without any prior lymphodepleting therapy.
- Treatment continued until maximal response, unacceptable toxicity, patient or investigator decision, or withdrawal of consent.
- ✓ Pediatric (aged <16 years; 23.1%) and adult (76.9%) patients were included.
- ✓ Median age was 36.0 years (range, 2-74).
- ✓ SOT: Median time from transplant to diagnosis of EBV+ PTLD was 5.1 months (range, 1.4-275.9).
- ✓ HSCT: Median time from initial EBV+ PTLD diagnosis to first administration of tabelecleucel was 2.3 months (range, 0.2-67.6).

Tabelecleucel for EBV+ PTLD after allogeneic HCT or SOT in a multicenter expanded access


Nikiforow S. et al. Blood Advances, April 2024


Table 2. ORRs


protocol

	HCT (n = 14)	SOT (n = 12)	Total (N = 26)				
Best overall response, n (%)							
CR	4 (28.6)	6 (50.0)	10 (38.5)				
PR	3 (21.4)	4 (33.3)	7 (26.9)				
SD	2 (14.3)	1 (8.3)	3 (11.5)				
PD	4 (28.6)	1 (8.3)	5 (19.2)				
NE	1 (7.1)*	0	1 (3.8)*				
Responders, n (%)	7 (50.0)	10 (83.3)	17 (65.4)				
95% CI	23.0-77.0	51.6-97.9	44.3-82.8				

A patient is considered a responder if the best overall response is either CR or PR. NE, not evaluable; PD, progressive disease.

^{❖ 1-2} year Overall Survival: 70.0% (95% CI, 46.5-84.7)

^{*}No disease assessment obtained.

[♦] HSCT:61.5% (CI, 30.8-81.8)
♦ SOT: 81.5% (CI, 43.5-95.1)

Outline

Viral Infections

Bacterial Infections

Fungal Infections

SOT

HSCT

Stepdown oral treatment in Bloodstream Infections

- Oral antibiotics for treatment of uncomplicated bacteremia in immunocompetent patients has become increasingly common in clinical practice.
- Agents such as fluoroquinolones, trimethoprim-sulfamethoxazole (TMP/SMX), and broad-spectrum oral betalactams due to their good bioavailability are the preferred agents
- Robust evidences to support the oral step-down therapy (7 RCT, 4 retrospective)
 - ✓ equivalent or higher rates of treatment success oral vs intravenous
 - ✓ fewer adverse events in the oral
 - ✓ reduced length of stay

No studies focused on the solid-organ transplant population.

Tamma PD. JAMA Intern Med 2019; 179: 316-23.

Rieger KL. Pharmacotherapy 2017; 37:1479-83.

Sutton JD. JAMA Netw Open 2020; 3: e2020166.

Keller SC. Pharmacotherapy 2018; 38:476–81.

Saad S. BMC Infect Dis 2020; 20:785.

Nisly SA. J Glob Antimicrob Resist 2020; 20:74 ALTA MATER STUDIORUA

- * Aim: to assess the safety and efficacy of oral antibiotic step-down therapy for uncomplicated GN-BSI in SOT recipients.
- * Study design: retrospective observational study of all SOT recipients within the Massachusetts General and Brigham and Women's Hospital systems from 2016 to 2021 with uGNBSI treated with oral stepdown therapy
- **Primary endpoints: mortality, bacteremia recurrence**, and reinitiation of IV antibiotics.
- **Secondary endpoints**: length of stay, *Clostridioides difficile* infection, treatment-associated complications, and tunneled central venous catheter placement.

Oral group:120 patients

Intravenous group:42 patiens

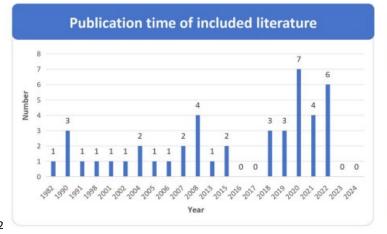
Table 1. Baseline Patient Characteristics

	IV (N = 42)	PO (N = 120)	<i>P</i> Value
Age, median (IQR; range)	64.5 (56, 70; 34, 82)	62 (54, 70; 22, 95)	.49
Female sex (N, %)	26 (62)	58 (48)	.09
Transplanted organ (N, %)			
Kidney	29 (69)	84 (70)	.97
Liver	4 (10)	13 (11)	
Lung	2 (5)	7 (6)	
Heart	3 (7)	7 (6)	
Bowel	0 (0)	1 (1)	
Combined ^a	4 (10)	8 (7)	
Years from transplant, median (IQR; range)	2.5 (1, 10; 0.02–25)	3 (0.67, 10; 0.02–42)	.80
Pitt bacteremia score, median (IQR; range) ^b	0 (0, 1; 0–4)	0 (0, 1; 0–6)	.65
Charlson comorbidity score, median (IQR; range) ^c	5.5 (3, 7; 1–11)	6 (4, 7; 1–15)	.93
CMV viremia in the 90 d before hospital discharge (N, %)	3 (7)	2 (2)	.11
Treatment for rejection in the 90 d before hospital discharge (N, %)	2 (5)	4 (3)	.17
24		UN	IVERSITA DI BOLOGNA

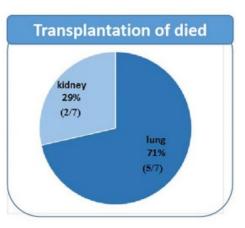
Table 4. Clinical Outcomes in Oral and IV Antibiotic Treatment Groups

	Oral Group, N (%)*	IV Group, N (%)
Mortality	0 (0)	0 (0)
30-d bacteremia recurrence	2 (2)	2 (5)
Transition back to IV therapy ^b	6 (5)	4 (9)
Total antibiotic duration (median days)	15 (range, 7–36) IV duration: 4 (range, 1–15)	16 (range, 12–29)
Length of hospitalization (median days)	5 (range, 3–16)	7 (range, 4–18)
Development of Clostridium difficile	2 (2)	5 (12)
Other treatment-related complications	3 (3)°	4 (10) ^d

^{*}of patients in oral arm: 33% were within the 1 year of transplant 30% within the first 6 months, and 15% ₂₅within the first 3 months.


Inverse probability of treatment-weighted models, using propensity scores	Odds Ratio Or Quantitative Difference In IV Versus PO Group ^a (95% CI, <i>P</i> Value)
Mortality	-
30-d bacteremia recurrence	3.1 (0.4–23.1; .27)
Transition back to IV therapy ^b	1.7 (0.6–8.8; .38)
Total antibiotic duration (median days)	0.7 d (-0.6 to 2.1; .27)
Length of hospitalization (median days)	1.97 d (0.4–3.6; .005)
Development of Clostridium difficile	8.4 (1.5–46.5; .015)
Other treatment-related complications	6.4 (1.9–20.9; .002)


Adjusted for: age, sex, transplant type, time from transplant, Pitt bacteremia score, Charlson comorbidity score, CMV viral load >500 IU/mL, rejection within 90 days preceding hospital discharge



Ureaplasma urealyticum infection following organ transplantation: a case report and narrative review Zhang H. Renal Failure, 2024

- ❖ About 25%–40% of men and **80% of women** have asymptomatic Ureaplasma urealyticum (UU) colonization in the urinary tract. In patients with immunodeficiency, UU is more predisposed to causing **disseminated infection**
- Ureaplasma urealyticum can induce hyperammonaemia through the hydrolysis of urea into ammonia, catalyzed by cytoplasmic urease.
- No clinical repercussions in genitourinary infections. However, in disseminated infections:
 - ✓ Elevated and persistent hyperammonemia → Cerebral edema → Death.

Ureaplasma urealyticum infection following organ transplantation: a case report and narrative review Zhang H. Renal Failure, 2024

Table 3. Summary of dead patients infected with *Ureaplasma urealyticum* after transplantation in review.

	, ,						
Trans organ	Author/year	Gender	Age	Symptom	Time post transplant		Drug /course
Lung	Bharat, A. 2015 [8]	Male	44	Acute mental status changes	7 d	Routine blood, urine, and BAL fluid cultures were negative	Azithromycin (500 mg daily for 5 days)
Lung	Chan, P.G. 2021 [17]	Male	34	Shock liver	3 d	Hypotensive, elevated ammonia levels	CRRT, lactulose; 13d
Lung	McLaughlin, D. C. 2018 [31]	Male	65	Refractory status epilepticus	7 d	Ammonia level of 830 µmol/L	Mannitol and 23.4% hypertonic saline, CRRT
Lung	Shrestha, K. 2022 [48]	Female	30	Decreased responsiveness	7 d	Ammonia levels 353 mmol/l	CRRT, lactulose, polyethylene glycol, levocarnitine, rifaximin, acarbose & sodium benzoate
Kidney	Legouy, C. 2020 [35]	Female	65	Refractory status epilepticus	3 months	Serum ammonia 671 µmol /L	Levofloxacin(500 mg, qd) and doxycyline(200 mg, bid); 4 w
Lung	Wylam, Mark E. 2013 [53]	Female	64	Fever to 38.4°C, and became less alert.	4 d	POD7d ammonia was greater than 704 μmol/L	Ciprofloxacin (400 mg IV twice daily), replaced by efepime later
Kidney	Kiberenge, R. K. 2015 [38]	Male	35	Nausea, vomiting, and altered mental status	9 d	Ammonia level of 646 µmol/L repeat level 3 h later was 939 µmol/L	CRRT, sodium phenylbutyrate, and sodium benzoate

CRRT: continuous renal replacement therapy.

Donor-derived Mycoplasma and Ureaplasma infections in lung transplant recipients: A prospective study of donor and recipient respiratory tract screening and recipient outcomes Tam PCK, et al. Am. I. Transport

Tam PCK. et al. Am. J. Transp. 2024

- Best practices for mollicute screening remain unknown.
- ❖ Study design: single-center prospective study analyzing lung transplants from 2020-2021
- ❖ Intervention: donor and recipient BAL samples obtained at time of transplant underwent mollicute screening (culture and PCR).
- * Results: 115 total lung transplants:
 - 99 (86%) donors: 18 (18%) positive.
 - 92 (93%) recipients: 3 (3%) positive results.
- 9 (9%) recipients developed mollicute infection.
- Sensitivity of donor screening: 67% (6/9) via culture and 56% (5/9) via PCR.
- Positive predictive value for donor culture was 75% (6/8), compared with 33% (5/15) for PCR.

Donor screening via culture predicted all serious recipient mollicute infections and had better positive predictive value than PCR;

However, neither screening test predicted all mollicute infections.

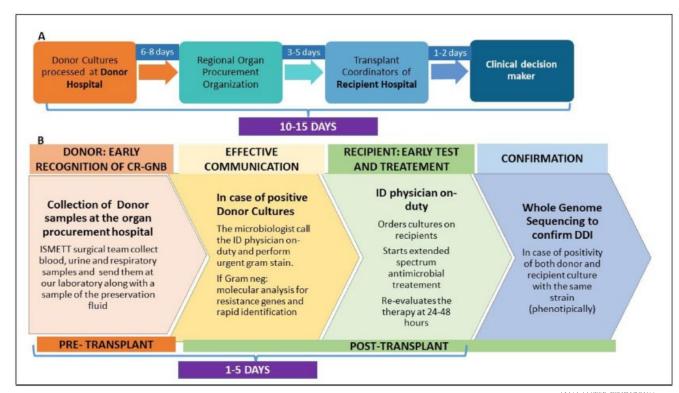
VALUTAZIONE DELL'IDONEITÀ DEL DONATORE IN RELAZIONE A PATOLOGIE INFETTIVE Appendice 1

Emissione: 14.12.2023

Rev. 1

Pag. 2 di 4

Ricerca di Ureaplasma e Mycoplasma con metodica molecolare o colturale su BAL o secrezioni respiratorie profonde per i donatori di polmone (i risultati di tale test non sono vincolanti ai fini della procedura di prelievo e successivo trapianto ma devono essere acquisiti appena possibile). Il campione per il test deve essere prelevato dal donatore dall'equipe di prelievo.


Targeted prophylaxis VS Universal prophylaxis?

Donor-derived carbapenem-resistant gram-negative bacterial infections in solid organ transplant recipients: Active surveillance enhances recipient safety

Mularoni A. et al. Am. J. Transp. 2024

- Study design: prospective cohort study. All consecutive patients who underwent SOT from December 2015 to July 2021
- Aims: to evaluate the incidence, factors associated with transmission, and the outcome of recipients with unexpected CR-GNB DDIs after the implementation of local active surveillance system
- LASS provides for early detection of unexpected donor CR-GNB infections, prophylaxis of recipients at high risk, and early diagnosis and treatment of DDIs.

Donor-derived carbapenem-resistant gram-negative bacterial infections in solid organ transplant recipients: Active surveillance enhances recipient safety

Mularoni A. et al. Am. J. Transp. 2024

Results:

- 791 recipients: 38 (4.8%) were at high risk of unexpected CR-GNB DDI: 25 CRE, 13 CRAB
- Incidence of CR-GNB DDI was 1.4% (9 of 25 of CRE and 2 of 13 of CRAB), and 29% in HR recipients
- No difference in length of hospital stay or survival in patients with and without CR-GNB DDI.

Table 1

Risk stratification according to the organ transplanted and the positive donor sample.

Positive donor sample	Blood	Urine	Respiratory specimen	Preservation fluid
Organ transplanted				
Liver	High Risk	Low Risk	Low Risk	High Risk
Kidney	High Risk	High Risk	Low Risk	High Risk
Heart	High Risk	Low Risk	Low Risk	High Risk
Lung	High Risk	Low Risk	High Risk	High Risk
Pancreas	High Risk	Low Risk	Low Risk	High Risk

- ❖ The type of donor specimen was the only significant predictor of CR-GNB DDI.
- ❖ Growth of CR-GNB in preservation fluid led to DDI in 87% of cases, in the case of donor blood positivity, the rate of DDI was only 18%.
- CR-GNB, Liver transplant recipients had a higher, but not statistically significant, risk of developing CR-GNB DDI compared with other organ recipients (9/22 [40.9%] vs 2/16 [12.5%], P <0.08).</p>

Outline

Viral Infections

Bacterial Infections

Fungal Infections

SOT

HSCT

Isavuconazole for the Treatment of Invasive Mold Disease in Solid Organ Transplant Recipients: A Multicenter Study on Efficacy and Safety in Real-life Clinical Practice

Fernandez-Ruiz M et al. Transplantation 2023;107: 762-773

Which is the impact on the management of immunosuppressive therapy of first-line or salvage therapy with isavuconazole?

- ❖ Multicenter retrospective cohort of 81 patients treated with isavuconazole for IA (n=71) or mucormycosis (n=10)
- ❖ IA: IPA (n=61), probable (n=49), A. fumigatus (n=39), A. flavus (n=3), A. terreus (n=3), A. lentulus (n=2)
- ❖ Mucormycosis: proven (n=10), deep soft tissue infection (n=3), lung (n=2)
- Isavuconazole use
 - > First-line (n=59) 72.8%
 - Salvage therapy (n=22)
 - Treatment-emergent toxicity (n=9)
 - Refractory diseases (n=6)
 - Oral stepdown therapy (n=5)
 - PK optimization (n=2)

Antifungal susceptibility testing	
Voriconazole, no. tested isolates	23
MIC values, geometric mean and range, mg/L	0.57 (0.19–16.00)
Isavuconazole, no. tested isolates	9
MIC values, geometric mean and range, mg/L	1.13 (0.50–16.00)
Posaconazole, no. tested isolates	18
MIC values, geometric mean and range, mg/L	0.12 (0.06–16.00)
	Co Co Mar

Isavuconazole for the Treatment of Invasive Mold Disease in Solid Organ Transplant Recipients: A Multicenter Study on Efficacy and Safety in Real-life Clinical Practice

Fernandez-Ruiz M et al. Transplantation 2023;107: 762-773

Which is the impact on the management of immunosuppressive therapy of first-line or salvage therapy with isavuconazole?

- ❖ Multicenter retrospective cohort of 81 patients treated with isavuconazole for IA (n=71) or mucormycosis (n=10)
- ❖ IA: IPA (n=61), probable (n=49), A. fumigatus (n=39), A. flavus (n=3), A. terreus (n=3), A. lentulus (n=2)
- ❖ Mucormycosis: proven (n=10), deep soft tissue infection (n=3), lung (n=2)
- Isavuconazole use
 - > First-line (n=59) 72.8%
 - Salvage therapy (n=22)
 - Treatment-emergent toxicity (n=9)
 - Refractory diseases (n=6)
 - Oral stepdown therapy (n=5)
 - PK optimization (n=2)

Clinical response by week 6: 53.1%
 More likely when used as first-line therapy

- Treatment-emergent adverse events: 17.3%
- Premature discontinuation: 6.2%

European Study of Cerebral Aspergillosis treated with Isavuconazole (ESCAI): A study by the ESCMID Fungal Infection Study Group

Serris A. et al. CID, 2024

- Aim: to compared the outcomes of patients treated with isavuconazole vs voriconazole (from historical control groups from the previously published French national cohort of CA)
- **Study design**: European multicenter retrospective study of patients treated with isavuconazole for proven or probable CA between 2014 and 2022
- **Results**: 40 patients from 10 countries were included:
 - * Haematological: 21/40, **53**%
 - SOT: 8/40, **20**%.
- 10 patients (25%) received isavuconazole as a first-line treatment for its ease of use (oral drug, better tolerance, less drug interactions, activity against several molds)
- Reasons for 2nd line isavuconazole:
 - therapeutic failure (7/30, 23.3%)
 - adverse events from a previous treatment (15/30, 50%)
 - ease of use (3/30, 10%)
 - drug-drug interactions/inadequate plasma concentration (4/30, 13.3%)
- 37 **♦** fungal coinfection (1/30, 3.3%)

Table	2.	Description	of	Antifungal	Treatment	in	40	Patients	Who
Receiv	red I	savuconazole	fo	r Cerebral A	spergillosis	Tre	eatm	ent	

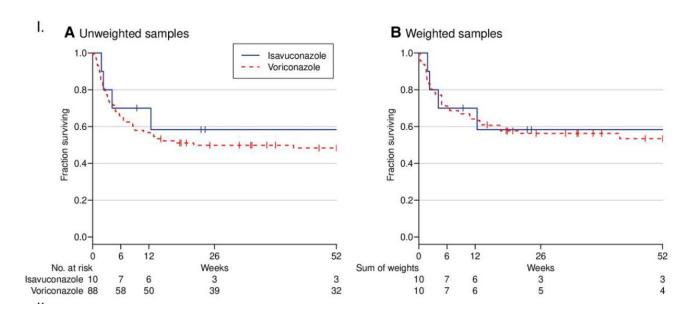
	Values
CA treatment before isavuconazole introduction, n (%)	30 (75%)
Median [IQR] number of treatment lines	2 [1–2]
 Median [IQR] duration of antifungal treatments before isavuconazole introduction, d 	65 [21–157]
First-line treatment for CA (n = 30), n	
Voriconazole	14
Voriconazole + echinocandin	2
Voriconazole + liposomal amphotericin B	2
Liposomal amphotericin B	8
Liposomal amphotericin B + echinocandin	2
Echinocandin	2
Neurosurgery, n (%)	17 (43%)
Previous to isavuconazole treatment	12 (30%)

European Study of Cerebral Aspergillosis treated with Isavuconazole (ESCAI): A study by the ESCMID Fungal Infection Study Group

Serris A. et al. CID, 2024

Outcome at the end of isavuconazole treatment or at the date of the latest consultation if ongoing treatment

Complete response	18 (45%)
Partial response	5 (12.5%)
Stable	6 (15%)
Progressive disease or death	11 (27.5%)


- ❖ The median follow-up duration from isavuconazole initiation was 262 days (IQR, 98–737 days).
- Univariate analysis: progression of CA under isavuconazole was not associated with:
 - first-line versus second-or-more treatment line (30% vs 27%, P = 1)
 - mono versus dual therapy (32% vs 42%, P = .7),
 - neurosurgical treatment or not (42% vs 32%, P = .56)
 - species of Aspergillus (A. fumigatus [38%] vs other species [43%]; P = 1)
 - The only factor associated with a higher mortality rate was the absence of TDM

European Study of Cerebral Aspergillosis treated with Isavuconazole (ESCAI): A study by the ESCMID Fungal Infection Study Group

Serris A. et al. CID, 2024

Survival comparison between ESCAI and CEREALS patients during the first year after first-line antifungal therapy

Comparison with CEREALS data suggests that isavuconazole might be as effective as voriconazole as a first-line treatment.

Take home messages

- Maribavir potrebbe essere un'opzione terapeutica anche per le infezioni da CMV GCV-S, ma necessario selezionare attentamente il paziente
- ❖ Letermovir è una strategia di profilassi con sempre più prospettive, sia in HSCT che SOT

- Step-down oral therapy potrebbe essere una strategia terapeutica efficiacie nei pazienti con BSI non complicate
- DDI restano un campo ancora da esplorare nel panorama dei pazienti sottoposti a SOT

❖ Isavuconazolo si sta affermando sempre di più nel setting del paziente immunodepresso per il trattamento delle IFI

Grazie