Gemelli

Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore

IMPACT OF THE NEW HEMATOLOGICAL TREATMENT LANDSCAPE ON INVASIVE FUNGAL INFECTIONS

Livio Pagano UOC di Ematologia Geriatrica ed Emopatie Rare

Roma

ON CON

Risk stratification for invasive fungal infections in patients with haematological malignancies: SEIFEM recommendations

HIGH risk		INTERMEDIATE risk		LOW risk
<u>AML</u> undergoing induction CHT with any of factors: neutropenia at baseline, low CR p secondary AML), age >65 yrs, significant p <u>AML</u> with prior IA <u>AML</u> undergoing <u>salvage regimens</u> for rela	probability (adverse K, pulmonary dysfunction	<u>AML</u> not meeting criteria for high- or low-risk groups	-	undergoing first remission-induction on CHT and without <u>ANY</u> risk factors ith ATRA/ATO
Allogeneic stem cell transplantation (from donors other than a matched s HM, GvHD requiring high-dose stero IFI) <u>MDS/AML</u> receiving AZA as salvage t regimens <u>ALL</u> : Elderly patients (≥55 yrs); intens (induction); high-dose dexametazon	Can	this classification still be considered current?		dults (<30 yrs); maintainance ; TKI + steroids (Ph+ ALL)
(relapsed/refractory)		ASCT: Previous IFI; >3 lines of therapy (disease burden); prolonged neutropenia (ANC <500/mm ³ for more than 14 days); corticosteroid therapy; colonisation by Candida spp; previous fludarabine treatment CLL treated with multiple lines of CTX Multiple myeloma in 3 or more lines or during ASCT HD: if received 'escalating BEACOPP' DLBCL relapsed/refractory	thrombocythe polycythemia Low- or high-	myeloid leukaemia, essential mia, idiopathic thrombocytosis,

ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; ANC, absolute neutrophil count; APL, acute promyelocytic leukaemia; ASCT, autologous stem cell transplantation; ATO, arsenic trioxide; ATRA, all-trans retinoic acid; AZA, azacitidine; BEACOPP, bleomycin-cyclophosphamide-doxorubicin-etoposide-prednisolone-procarbazine-vincristine; CHT, chemotherapy; CLL, chronic lymphocytic leukaemia; CR, complete remission; CTX, cyclophosphamide; DLBCL, diffuse large B-cell lymphoma; GvHD, graft versus host disease; HD, Hodgkin disease; HM, haematological malignancy; IA, invasive aspergillosis; IFI, invasive fungal infection; IPSS, International Prognostic Scoring System; K, karyotype; MDS, myelodysplastic syndrome; MM, multiple myeloma; MPN, myeloproliferative neoplasms; NHL, non-Hodgkin lymphoma; Ph+, Philadelphia chromosome-positive; SEIFEM, Sorveglianza Epidemiologica Infezioni nelle Emopatie; TKI, tyrosine kinase inhibitor; yrs, years. Pagano, et al. Blood Rev. 2017;31:17–29.

New targeted agents approved in HMs

AML

- 1. FLT3 inhibitors (quizartinib, midostaurin, sorafenib, gilteritinib)
- 2. Monoclonal antibodies (gemtuzumab ozogamicin, magrolimab)
- 3. Hh pathway inhibitor (glasgegib)
- 4. IDH1-2 inhibitors (ivosidenib, enasidenib)
- 5. Combined liposomal cytarabine and daunorubicin (CPX-351)

Lymphomas (low and high grade)

- 1. BTK inhibitors (ibrutinib)
- 2. Monoclonal antibodies anti-CD20 (rituximab, ofatumumab)
- 3. PI3Kδ signalling inhibitor (idelalisib)

Hodgkin lymphoma

- 1. Monoclonal antibodies anti-CD30 (brentuximab)
- 2. IgG4 anti-PD-1 (nivolumab)

ALL

- **1.** Monoclonal antibodies
 - a. Anti-CD19 (blinatumomab)
 - b. Anti-CD22 (inotuzumab ozogamicin)
- 2. TK inhibitors (imatinib, nilotinib, dasatinib, ponatinib)

Multiple myeloma

- 1. IMiDs (thalidomide, lenalidomide pomalidomide)
- 2. Proteosome inhibitors (bortezomib, carfilzomib)
- 3. Monoclonal antibodies
 - a. Anti-CD38 (daratumumab)
 - b. Anti-CD319 (elotuzumab)
 - c. Anti-BCMA (belantamab)

CLL

- 1. BTK inhibitors (ibrutinib)
- 2. Monoclonal antibodies anti-CD20 (ofatumumab)
- 3. PI3Kδ signalling inhibitor (idelalisib)
- 4. Anti-apoptotic BCL-2 (venetoclax)

ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; BCL-2, B-cell lymphoma 2; BTK, Bruton's tyrosine kinase; CLL, chronic lymphocytic leukaemia; FLT3, fms-like tyrosine kinase 3; IDH, isocitrate dehydrogenase; IMiD, immunomodulary drug; PI3Kδ, phosphatidylinositol-4,5-bisphosphate 3-kinase subunit delta; TK, tyrosine kinase.

Gemtuzumab ozogamicin for de novo AML: ALFA-0701 trial

Preferred Term, [†] n (%)	GO n=131	Control n=137
Any SAE	88 (67.2)	76 (55.5)
Thrombocytopenia	34 (26.0)	6(4.4)
Bronchopulmonary aspergillosis	14 (10.7)	10 (7.3)
Septic shock	12 (9.2)	9 (6.6)
Febrile bone marrow aplasia	12 (9.2)	8 (5.8)
Bacterial sepsis	7 (5.3)	0
Acute kidney injury	6 (4.6)	4 (2.9)
Pneumonia	5 (3.8)	6 (4.4)
Sepsis	5 (3.8)	4 (2.9)
Acute respiratory distress syndrome	5 (3.8)	3 (2.2)
Escherichia sepsis	5 (3.8)	1 (0.7)
Veno-occlusive liver disease	5 (3.8)	0
Acute myeloid leukemia	5 (3.8)	0
Hepatocellular injury	4 (3.1)	2 (1.5)
Cholestatic liver injury	3 (2.3)	2 (1.5)
Febrile neutropenia	3 (2.3)	1 (0.7)
Mucosal inflammation	3 (2.3)	1 (0.7)
Disease progression	3 (2.3)	0
Enterococcal sepsis	3 (2.3)	0
Staphylococcal sepsis	2 (1.5)	5 (3.6)
Toxic skin eruption	1 (0.8)	3 (2.2)
	•	•

The incidence of IA is really high in both the groups!

SAE	GO (n = 131)	Control (n = 137)
Bronchopulmonary aspergillosis	14 (10.7%)	10 (7.3%)
Septic shock	12 (9.2%)	9 (6.6%)
Bacterial sepsis	7 (5.3%)	0
Pneumonia	5 (3.8%)	6 (4.4%)
Sepsis	5 (3.8%)	4 (2.9%)
Escherichia sepsis	5 (3.8%)	1 (0.7%)
Enterococcal sepsis	3 (2.3%)	0
Staphylococcal sepsis	2 (1.5%)	5 (3.6%)
Febrile neutropenia	3 (2.3%)	1 (0.7%)

AFP, antifungal prophylaxis; AML, acute myeloid leukaemia; GO, gemtuzumab ozogamicin; IA, invasive aspergillosis; SAE, serious adverse event. Lambert, et al. Haematologica. 2019;104:113–119.

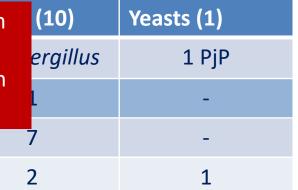
YES Prophylaxis

Liposomal daunorubicin plus Cytarabine (CPX-351): Infections in induction

Longer neutropenia

Better outcome

authors		N° patients	Febrile neutropenia	Pneumonia	Bacteremia	Fungal	Viral
Cortes et al,	CPX 351	81	44 (54%)	18 (22%)	24 (30%)	In pneumonia	0
Cancer 2015	Comparator	44	14 (34%)	4 (9%)	19 (43%)	groups	0
Lancet et al,	CPX 351	85	54 (63.5%)	13 (15%)	30 (35%)	12 (14%)	0
Blood 2014	3+7	41	21 (51.2%)	8 (19%)	8 (20%)	1 (2.4%)	0
Lancet et al,	CPX 351	153	68%	20%	nr	nr	0
J Clin Oncol 2018	3+7	156	70.9%	15%	nr	nr	
Issa et al. Leukemia 2020	Phase 2	65	19 (34%)	13 (23%)	9 (16%)	nr	0
Guolo et al, Blood Cancer J 2020	Phase 4	71	20 (28%)	8 (11%)	20 (28%)	2 PjP 3 (4%) IA	0
Roboz et al <i>,</i> Leuk & Lymph 2020	Phase 4	52	40 (77%)	7 (13%)	3 (6%)	nr	0
Chiche et al, Blood Adv 2021	Phase 4	103	94 (91%)	30 (30%)	25 (24%)	10 (10%) IA 1 (1%) CDC	0


AML

BACTERIAL/FUNGAL/VIRAL INFECTIONS IN PATIENTS WITH SECONDARY AML TREATED WITH LIPOSOMAL DAURORUBICIN-CITARABINE (VYXEOS) IN THE "REAL-LIFE" SEIFEM STUDY 2020 (submitted)

200 PAZIENTS (Total 336 Courses)

behaves like "acid" on the intestinal epithelium damaging it and at the	er
same time damaging the "Microbiota". On the contrary, there is no such	
evidence with the liposomal combination	ŀ

MORTALITY for INFECTION: 15/200 (6%)

FUNGAL

VIRAL

IFI 5% of all patients 3% of all courses

MORTALITY for FUNGAL INFECTION: 1/199 (0.5%)

Probable

Proven

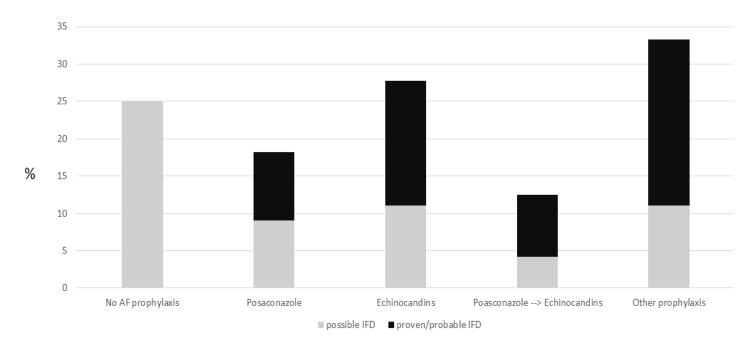
ALL

AML

ALL

Interactions of mould-active azoles with co-administered chemotherapeutic agents and targeted therapies

Co-administered agent	Interaction mechanism	Effect	Recommendations and actions
Vincristine	Inhibition CYP3A4	Increased neurotoxicity	Avoid combo
Cyclophosphamide	Inhibition CYP3A4/2C9	\uparrow Hepatotoxicity \downarrow Activation to hydroxy-CTX	Monitor Avoid combo
Imatinib	Inhibition CYP3A4	↑ Imatinib exposure	Avoid combo
Dasatinib	Inhibition CYP3A4	↑ D. exposure, ↑ QT interval	Avoid combo, monitor ECG
Nilotinib	Inhibition CYP3A4	↑ N. exposure, ↑ QT interva l	Avoid combo, monitor ECG
Ponatinib	Substrate CYP3A4	↓ TKI dosage	Avoid combo
Sorafenib	Inhibition CYP3A4	No effect	Monitor QTc
Midostaurin	Inhibition CYP3A4	\uparrow Adverse reaction	Avoid combo, monitor QTc
Quizartinib	Inhibition CYP3A4	↑ Quizartinib exposure	\downarrow Dose (40 mg \rightarrow 20 mg)
Venetoclax	Inhibition CYP3A4	↑ Venetoclax exposure	↓ Dose 50% if moderate; 75% if potent


ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CYP3A4, cytochrome P450 3A4; D., dastinib; ECG, electrocardiogram; N., nilotinib; TKI, tyrosine kinase inhibitor; QTc, corrected QT interval. Adapted from Busca & Pagano. Exp Rev Anti-Infect Ther. 2018;16:531–542.

High incidence of invasive fungal diseases in patients with FLT3mutated AML treated with Midostaurin: results of a multicenter observational SEIFEM Study Cattaneo et al, submitted

From June 1st, 2019, to December 31st, 2021, 119 patients treated with chemotherapy+midostaurin as induction/reinduction, consolidation. Only 114 were evaluable

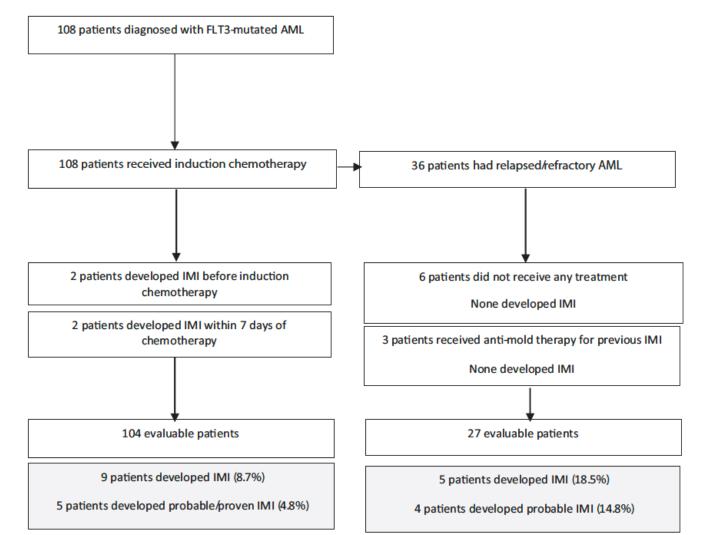
Proven/probable and possible IFD incidence was 23/114 (20.2%) during induction and 7/167 (4.2%) during different consolidation courses

AF	prophylaxis (induction cht, n=119)	
	No	8
	Fluconazole	3
	Posaconazole	60
	Posaconazole 🗲 Echinocandin	24
	Echinocandin	18
	L-AmB	4
•	Isavuconazole	2
AF	prophylaxis (consolidation cht, n=167)	
	No	91
	Fluconazole	8
	Posaconazole	20
	Posaconazole 🗲 Echinocandin	6
	Echinocandin	27
	L-AmB	1
	Isavuconazole	6
	Itraconazole	3
	Voriconazole	5

Antifungal prophylaxis and novel drugs in acute myeloid leukemia: the midostaurin and posaconazole dilemma

Antifungal agent	CYP3A4 impact	Clinical considerations for antifungal prophylaxis
Posaconazole	Strong inhibition	QTc prolongation Oral solution associated with low absorption and plasma level variation, TDM recommended Hepatic toxicity
Isavuconazole	Moderate inhibition	QTc shortening Hepatic toxicity higher rate of breakthrough fungal infections when used for prophylaxis
Voriconazole	Strong inhibition	QTc prolongation Vision changes Hepatic toxicity Hallucinations Long-term use associated with skin cancer
Micafungin	Minor substrate	Well tolerated Only available intravenously Limited efficacy against molds
Caspofungin	Minor substrate	Well tolerated Only available intravenously Limited efficacy against molds

	Pro	Contra	Recommendation by the authors
1. Administration of recommended dosage of midostaurin as of package insert and standard dosage antifungal prophylaxis with posaconazole. Monitor patient	 Antileukemic activity of midostaurin as assessed in clinical trials is assured 	frequent ECG controls, clinical evaluation of pulmonary function) must be warranted - Increased risk of	Moderately recommended This approach detects potential toxicity-related AE late
 closely for AE(s). 2. Dose reduction of midostaurin to ~ 50% during induction treatment while posaconazole is administered. 	 Risk of early onset of AEs and generally AEs is most likely omitted 	 midostaurin-related AE(s) is given Antileukemic activity of midostaurin is not warranted as assessed in clinical trials Midostaurin dosage increase must be guaranteed when posaconazole is stopped Non-adherence to azole prophy- laxis or altered pharmacok inetics lead to low midostaurin exposure 	Marginally recommended This approach potentially restricts the therapeutic effect of midostaurin while not providing efficacy monitoring
3. Switch antifungal pro EC or other triazoles UNCh	anged dosage	of Mido and Po	osa but ents than
Itraconazole, Isavuco		M of both drug	ve been
			ve been r provide
		- Fluconazole/Itraconazole proved to be inferior in antifungal prophy-	ve been r provide


AML

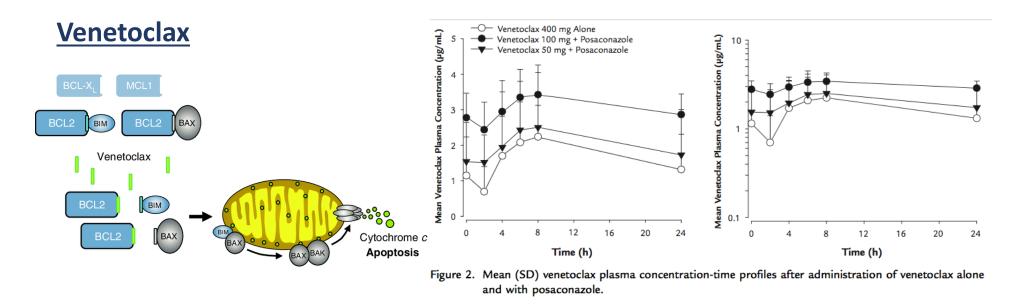
Stemler et al, Ann Hematol 2020

Invasive Mold Infections in *FLT3*-Mutated Acute Myeloid Leukemia

108 patients receiving fluconazole or micafungin prophylaxis. IMI incidence after induction and salvage therapy was 4.8% and 14.8%, respectively, and did not differ between patients receiving 3+7 regimen or 3+7 plus midostaurin (4.3% vs 4.5%)

	IMI		
Characteristic	IMI (N = 5)	$\begin{array}{l} \mbox{Proven/Probable IMI} \\ \mbox{(N = 4)} \end{array}$	
Gilteritinib	2 (40)	2 (50)	
Sorafenib	1 (20)	1 <mark>(</mark> 25)	
Quizartinib	0	0	

HR-MDS and AML treated with hypomethylating agents: IFDs


YES Prophylaxis

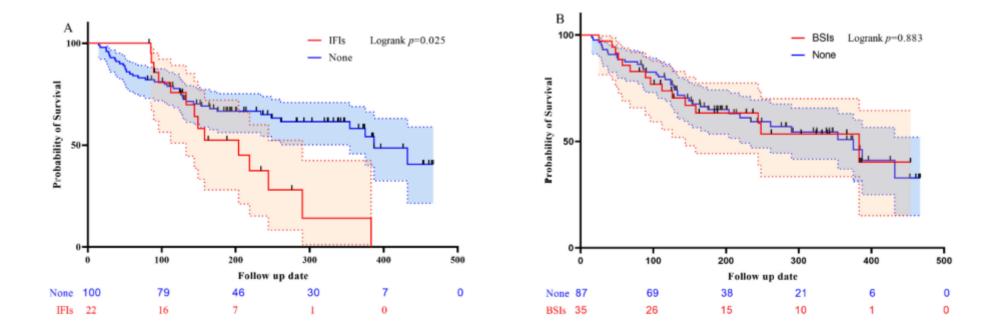
Study	Population	IFD incidence, n/N (%)	Notes
Merkel, et al. 2013 (N=184) ¹	MDS or AMLAZA treatment	6/184 <mark>(3.3)</mark>	Unfavourable cytogenetics → risk for infections
Falantes, et al. 2014 (N=64) ²	MDS or AMLAZA treatment	8/64 <mark>(12.5)</mark>	All invasive aspergillosis cases were considered probable
Pomares, et al. 2016 (N=121) ⁴	MDS or AMLAZA treatment	4/121 <mark>(3.3)</mark>	Possible and proven/probable IFD
Trubiano, et al. 2017 (N=68)⁵	MDS or AMLAZA treatment	6/68 <mark>(8.8)</mark>	EORTC criteria
Latagliata, et al. 2020 (N=146) ³	MDS patientsAZA treatment	21/146 <mark>(14.4)</mark>	No clear definition/criteria of IFD used
Kim, et al. 2020 (N=209) ⁶	MDS or AMLAZA/DAC treatment	20/209 (9.6) • AZA (7.7) • DAC (14.5)	Possible and proven/probable IFD

Incidence similar to standard induction AML treatment \rightarrow need for antifungal prophylaxis

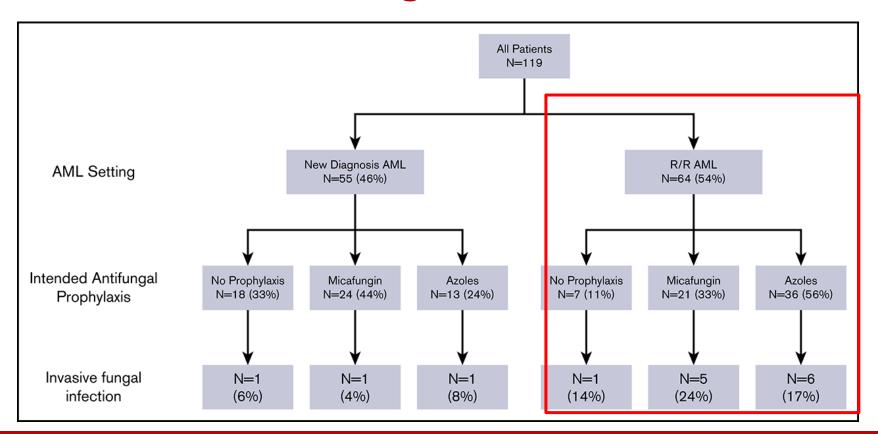
AML, acute myeloid leukaemia; AZA, azacitidine; DAC, decitabine; EORTC, European Organisation for Research and Treatment of Cancer; HR, high risk; IFD, invasive fungal disease; MDS, myelodysplastic syndrome. 1. Merkal, et al. Am J Hematol. 2013;88:130–134; 2. Falantes, et al. Clin Lymphoma Myeloma Leuk. 2014;14:80–86; 3. . Latagliata, et al. Hematol Oncol. 2020;3892):189–196; 4. Pomares, et al. Mycoses. 2016;59:516–519; 5. Trubiano, et al. Leuk Lymphoma. 2017;58:2379–2386; 6. Kim, et al. Am J Hematol. 2020;95:792–798.

AML: BCL2 inhibitors

- In first line therapy: 30% gr 3-4 febrile neutropenia, 1 IA and 1 candidiasis among 45 patients
- In salvage therapy: 19% IFI among 43 patients
- Concern about interactions: azoles increase plasma level of venetoclax 8-fold!
 Posaconazole is allowed after venetoclax a minimum 75% dose reduction


Rate of IFI in patients receiving Venetoclax and HMA

Reference	No. patients	p/p IFI	comments
Di Nardo et al, Lancet Oncol 2018	57 AML	8%	-
Aldoss et al, Blood Adv 2019	119 AML	12.6%	Higher risk in non responders and R/R AML
Lee et al, Cancers 2021	122 AML	18%	88% received PAP mainly with fluconazole Secondary, therapy related AML were risk factors
On et al, BJH 2022	235 AML	5%	Asperg/candida/mucor 42% on mold-active PAP


Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis

Raeseok Lee ^{1,2}, Sung-Yeon Cho ^{1,2}, Dong-Gun Lee ^{1,2,*}, Hyeah Choi ^{1,2}, Silvia Park ^{1,3}, Byung-Sik Cho Yoo-Jin Kim ^{1,3} and Hee-Je Kim ^{1,3}

122 patients treated with VEN+HM; 88% prophylaxis with FLUCO CI p/p IFI 18%; 86% IFI on Fluco, 14% bIFI on mold-active prophylaxis Overall mortality 43%; mortality with IFI 63%, mortality without IFI 39%

IFIs in AML treated with venetoclax and hypomethylating agents

- The authors concluded that the overall risk of IFIs during VEN+HMA therapy is low
- The risk of IFIs is higher in non-responders and in the R/R setting
- These patients need re-evaluation of their antifungal prophylaxis to minimise the risk of IFIs during therapy

AML, acute myeloid leukaemia; HMA, hypomethylating agent; IFI, invasive fungal infection; R/R, relapsed/refractory; VEN, venetoclax. Aldoss, et al. Blood Adv. 2019;3:4043–4049.

Duration of Cytopenias With Concomitant Venetoclax and Azole Antifungals in Acute Myeloid Leukemia

	Diagnosis		Hypomethylating Agent Schedule		Venetoclax Duration			Documented Infection	
	sAML/t-AML $(n = 20)$	De Novo AML (n = 44)	DAC 10 (n = 49)	DAC 5 or AZA 7 (n = 15)	>21 d (n = 31)	15-21 d (n = 24)	≤14 d (n = 9)	Yes (n = 28)	No (n = 36)
ANC > 500 cells/mm ³ , No. (%)	19 (95)	40 <mark>(</mark> 91)	46 (94)	13 (87)	27 (87)	23 (96)	9 (100)	27 (96)	32 (89)
Days to ANC > 500 cells/mm ³ , median (95% Cl)	33 (31-40)	34 (33-37)	35 (33-37)	33 (28-NA)	33 (30-35)	37 (33-41)	36 (29-NA)	34 <mark>(</mark> 31-39)	34 (32-37)
$ANC > 1000 \text{ cells/mm}^3$, No. (%)	18 (90)	33 (75)	41 (84)	10 (67)	23 (74)	21 (88)	7 (78)	26 (93)	25 (69)
Days to ANC > 1000 cells/mm ³ , median (95% Cl)	34 (33-47)	37 (34-41)	37 <mark>(</mark> 34-40)	34 (30-NA)	34 (32-44)	38 (37-46)	38 (33-NA)	<mark>38 (</mark> 33-41)	35 (33-46)
PLT count > 50,000 cells/mm ³ , No. (%)	15 (75)	44 (100)	46 (94)	13 (87)	29 (94)	22 (92)	8 (89)	24 (86)	35 (97)
Days to PLT count > 50,000 cells/mm ³ , median (95% Cl)	27 (21-NA) ^{a,b}	23 (20-26) ^{a,b}	25 (22-28)	19 (16-28)	19 (17-25) ^{a,b}	26 (23-31) ^{a,b}	29 (22-NA) ^{a,b}	28 (25-34) ^{a,b}	21 (18-24) ^{a,b}
PLT count > $100,000$ cells/mm ³ , No. (%)	14 (70)	42 (95)	43 (88)	13 (87)	29 (94)	20 (83)	7 (78)	23 (82)	33 (92)
Days to PLT count > 100,000 cells/mm ³ , median (95% Cl)	29 (22-NA) ^{a,c}	24 (22-29) ^{a,c}	27 (23-33)	22 (20-32)	22 (20-27) ^{a,c}	31 (24-39) ^{a,c}	32 (23-NA) ^{a,c}	31 (26-50) ^{a,c}	23 (21-27) ^{a,c}

 $^{a}P < .05$ for within-group comparisons.

 $^{b}P < .05$ for the difference in median days to a PLT count > 50,000 cells/mm³ within the group.

 ^{c}P < .05 for the difference in median days to a PLT count > 100,000 cells/mm³ within the group.

Prolonged myelosuppression is anticipated with the use of VEN and HMA therapy

Azole-prophylaxis is preferred for AMLs undergoing induction therapy expected to result in prolonged neutropenia The combination of VEN with azoles is inevitable, and this creates a need to understand the effects of this combination on both ANC and PLT recovery

Patients receiving concomitant PCZ and VCZ with 100 mg of VEN had similar times to ANC and PLT recovery, and this indicated that VEN may be administered at the same dosage during course 1 of therapy with VEN and HMA.

AML treated with Demethylating + Venetoclax Vs. **Demethylating agents**

Candoni et al, SEIFEM 2021 (in progress)

	All patients	Demethylating only	Demethylating + Venetoclax	Ρ
N° PZ with Pneumonia	97/230 (42%)	35/98 (36%)	62/132 (47%)	ns
 <u>N° Pneumonia</u> Within the first 3 courses From 4 	116 76/116 (66%) 40/116 (44%)	39 21/39 (54%) 18/39 (46%)	77 <u>55/77 (71%)</u> 22/77 (29%)	0,05
Ethiology:•Bacterial•Viral•Fungal•ND	56/116 (48%) 17/116 (15%) 24/116 (21%) 19/116 (16%)	13/39 (33%) 8*/39 8/39 (21%) 10/39	43/77 (56%) 9*/77 16/77 (21%) 9/77	
 <u>Prophylaxis</u> No Only anti-Bacterial Only anti-Fungal Both 	52/116 (45%) 16/116 (14%) 29/116 (25%) 19/116 (16%)	19/39 (49%) 7/39 (18%) 4/39 (10%) 9/39 (23%)	33/77 (43%) 9/77 (12%) 25/77 (32%) 10/77 (13%)	ns
Admission in Hospital	101/116 (87%)	33/39 (85%)	68/77 (88%)	
<u>Exitus</u>	43/116 (37%)	15/39 (38%)	28/77 (36%)	

Inotuzumab ozogamicin in R/R ALL: INO-VATE study

		InO (n =	= 164), No.	(%)		SoC (n = 143), No. (%)					
Serious Adverse Event	Any Grade	Grade ≥3	Grade 3	Grade 4	Grade 5	Any Grade	Grade ≥3	Grade 3	Grade 4	Grade 5	
Any	85 (51.8)	80 (48.8)	37 (22.6)	17 (10.4)	26 (15.9)	72 (50.3)	71 (49.7)	34 (23.8)	21 (14.7)	16 (11.2)	
Febrile neutropenia	19 (11.6)	19 (11.6)	16 (9.8)	3 (1.8)	0 (0)	27 (18.9)	27 (18.9)	20 (14.0)	7 (4.9)	0 (0)	
veno-occlusive liver disease	23 (14.0)	19 (11.0)	8 (4.9)	0 (3.7)	5 (3.0)	3 (2.1)	3 (2.1)	3 (2.1)	0 (0)	0 (0)	
Sepsis	4 (2.4)	4 (2.4)	0 (0)	2 (1.2)	2 (1.2)	10 (7.0)	10 (7.0)	1 (0.7)	7 (4.9)	2 (1.4)	
Disease progression	8 (4.9)	8 (4.9)	0 (0)	0 (0)	8 (4.9)	5 (3.5)	5 (3.5)	0 (0)	0 (0)	5 (3.5)	
Pneumonia	10 (6.1)	9 (5.5)	5 (3.0)	1 (0.6)	3 (1.8)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Respiratory failure	2 (1.2)	2 (1.2)	1 (0.6)	1 (0.6)	0 (0)	6 (4.2)	6 (4.2)	0 (0)	3 (2.1)	3 (2.1)	
Pyrexia	5 (3.0)	2 (1.2)	2 (1.2)	0 (0)	0 (0)	3 (2.1)	1 (0.7)	0 (0)	1 (0.7)	0 (0)	
Neutropenic sepsis	3 (1.8)	3 (1.8)	1 (0.6)	1 (0.6)	1 (0.6)	4 (2.8)	4 (2.8)	1 (0.7)	3 (2.1)	0 (0)	
Septic shock	3 (1.8)	3 (1.8)	1 (0.6)	1 (0.6)	1 (0.6)	3 (2.1)	3 (2.1)	1 (0.7)	1 (0.7)	1 (0.7)	
Fungal pneumonia	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3 (2.1)	3 (2.1)	3 (2.1)	0 (0)	0 (0)	
Hyperbilirubinemia	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3 (2.1)	3 (2.1)	2 (1.4)	1 (0.7)	0 (0)	
Subdural hematoma	1 (0.6)	0 (0)	0 (0)	0 (0)	0 (0)	3 (2.1)	3 (2.1)	2 (1.4)	1 (0.7)	0 (0)	
Hypotension	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3 (2.1)	2 (1.4)	0 (0)	2 (1.4)	0 (0)	

ALL, acute lymphoblastic leukaemia; InO, inotuzumab ozogamicin; R/R, relapsed or refractory; SoC, standard of care. Kantarjian, et al. Cancer. 2019;125:2474–2478.

Blinatumomab for adult patients with R/R B-precursor ALL: A multicentre, single-arm, phase II study

	All patients N = 189
Infections, n	•
Sepsis [†]	4 (2)
Fusarium infection	2 (1)
Pneumonia	2 (1)
Septic shock	2 (1)
Aspergillus infection	1 (<1)
Bronchopneumonia	1 (<1)
Candida infection [†]	1 (<1)
Enterococcal bacteremia	1 (<1)
Escherichia coli sepsis [†]	1 (<1)
Lung infection	1 (<1)
Pneumonia fungal	1 (<1)

Among 189 treated patients, 5 developed an IFI (2.6%)

Infections and CLD: A multifactorial pathogenesis

Monoclonal antibodies Proteasome inhibitor Immunomodulating agents Extensive use of transplant procedures Multiple lines of chemotherapy

Pluri-treated patient

Idelalisib in combination with ofatumumab for previously treated CLL: An open-label, randomised phase III trial

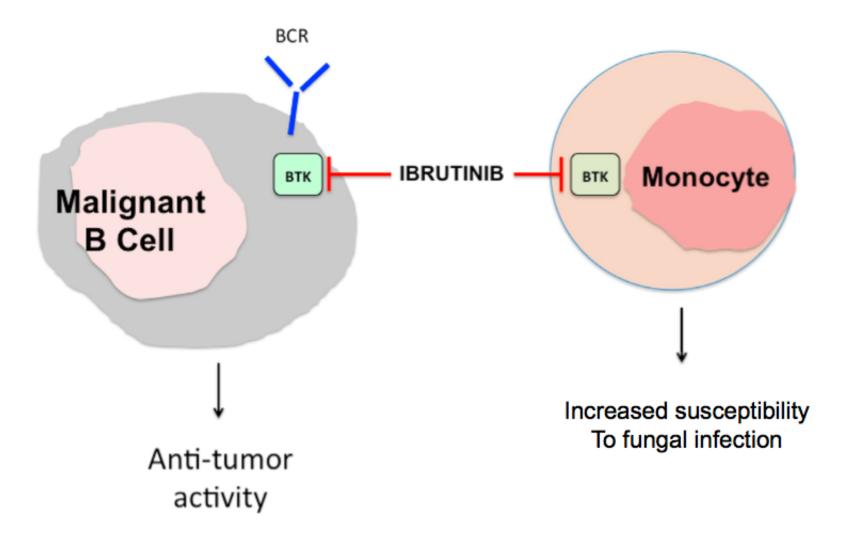
Adverse events of special interest

	Idelalisib plus ofa	tumumab (n=173)	Ofatumumab (n=86)			
	Any grade, n (%)	Grade ≥3, n (%)	Any grade, n (%)	Grade ≥3, n (%)		
Diarrhoea or colitis	94 (54)	40 (23)	21 (24)	1 (1)		
Rash*	52 (30)	9 (5)	9 (11)	2 (2)		
Pneumonitis	10 (6)	8 (5)	0	0		
Pneumonia [†]	47 (27) 34 (20)		16 (19)	10 (12)		

The combination of 'monoclonal antibody and PI3Kδ signalling inhibitor' increases the risk of serious infections particularly CMV and *Pneumocystis* pneumonia

Data cut off was Sept 1, 2015. *Rash was defined as including rash, erythematous rash, generalised rash, macular rash, maculopapular rash, papular rash, pruritic rash, morbilliform rash, and exfoliative rash. [†]Pneumonia included terms pneumonia, lung infection, lung infiltration, *Pneumocystis jirovecii* pneumonia, *Legionella* pneumonia, pseudomonal lung infection, fungal pneumonia, respiratory tract infection, lower respiratory tract infection, and bacterial lower respiratory tract infection.

CLL, chronic lymphocytic leukaemia; CMV, cytomegalovirus.


Jones, et al. Lancet Haematol. 2017;4:e114–e126.

Reference	Patients	All IFI, n (%)	Aspergillosis, n (%)	Candida, n (%)	Pneumocystis, n (%)	Cryptococcus, n (%)	Others
Grommes, et al. 2017 ¹	20 NHL	/	1 (5)	/	/	/	
Ruchlemer, et al. 2017 ²	28 CLL	28	18 (64)	/	/	/	10
Duma, et al. 2017 ³	30 CLL	5 (4)	5 (4)		/	/	
Lionakis, et al. 2017 ⁴	18 CNS NHL	8	7 (39)	/	1 (5.5)	/	
Ghez, et al. 2018⁵		33	27		1	4	1
Choquet, et al. 2016 ⁶	18 NHL	1	2	/	/	/	
Varughese, et al. 2018 ⁷	213 NHL 165 CLL	6 (3) 10 (6)	8 (2.1) + 1 IA and PJP	1 (0.3)	3 (0.8)	3 (0.8)	10
Gaye, et al. 2018 ⁸	CLL	2	2				

CLL, chronic lymphocytic leukaemia; CNS, central nervous system; IA, invasive aspergillosis; NHL, Non-Hodgkin lymphoma; PJP, *Pneumocystis jirovecii* pneumonia. 1. Grommes, et al. Cancer Cell. 2017;31(6):731–733; 2. Ruchlemer R et al ASH 2017 Abstract 4323; 3. Duma N et al ASH 2017 Abstract 4327; 4. Lionakis, et al. Cancer Cell. 2017;31(6):833–843; 5. Ghez, et al. Blood. 2018;131(17):1955–1959; 6. Choquet et al ASH 2016, Abstract 784; 7. Varughese, et al. Clin Infect Dis. 2018;67(5):687–692; 8. Gaye, et al. Med Mal Infect. 2018;48(4):294–297.

NHL

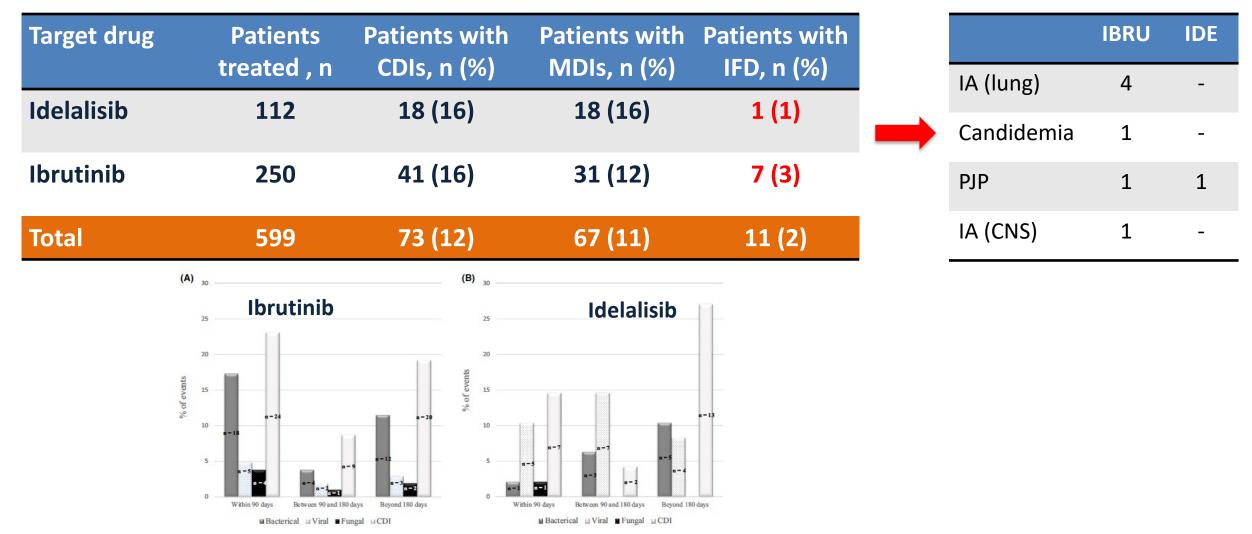
Ibrutinib in PCNSL: The Curious Cases of Clinical Responses and Aspergillosis

NHL

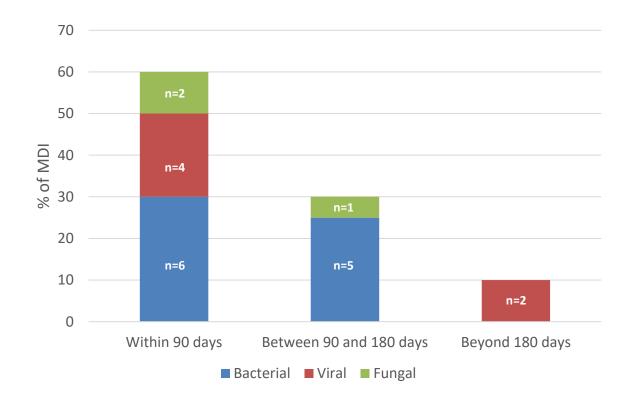
Ibrutinib in combination therapy

Patients, N			events, %	Pneumo		Any Grade 5
	Any gr	ade	Grade 3-4	Any grade	Grade 3-4	event, %
490	52	2	20	17	8	6

Ibrutinib as a single agent


Patients, N	Infectious	s events, %	Pneumo	onia, %	Any
	Any grade	Grade 3-4	Any grade	Grade 3-4	Grade 5 event, %
1629	56	26	21	13	10

NHL


Infections in patients with lymphoproliferative diseases treated with targeted agents: SEIFEM multicentric retrospective study

CDI, clinically defined infection; CNS, central nervous system; IA, invasive aspergillosis; IBRU, ibrutinib; IDE, idelalisib; IFD, invasive fungal disease; MDI, microbiologically defined infection; PJP, *Pneumocystis jirovecii* pneumonia. Marchesini, et al. Br J Haematol. 15 October 2020; doi: 10.1111/bjh.17145 (Epub ahead of print).

Infections in patients with lymphoproliferative diseases treated with brentuximab vedotin: SEIFEM multicentre retrospective study

	N = 23
Age, median (range)	48.2 (20-81)
Sex, male no. (%)	13 (56.5)
Medical comorbidities, N (%)	
Diabetes	3 (13)
COPD	2 (8.7)
Renal failure	2 (8.7)
Prior treatments, N (%)	
<3	13 (56.5)
>3	10 (43.5)
Hematological malignancies, N (%)	
HL	18 (78.3)
NHL T	3 (13)
GZL	1 (4.3)
ALCL	1 (4.3)
Therapy, N (%)	
Monotherapy	18 (78.3)
Combination	5 (21.7)
Infective events, N (%)	30
Grade <3	15 (50)
Grade \geq 3	15 (50)
Infective events, N (%)	30
CDI	10 (33.3)
MDI	20 (66.7)
Antimicrobial prophylaxis, N (%)	
Antiviral	16 (69.6)
Antifungal	8 (34.8)
Anti-PJP	17 (73.9)
Risk factors	
Neutropenia	5 (21.7)
Lymphopenia	2 (8.7)
CVC	15 (65.2)
Transplant	7 (30.4)
MDR colonization	0 (0)
Steroid treatment	
Prior	4 (17.4)
Concomitant	7 (30.4)
Days from beginning of BV to first infection,	52.1 (1-335)
median (range)	

Among 191 patients treated with BV, only 3 IFD were reported: 1 IA, 1 PJP and 1 candidemia (1.57%); none of these patients died

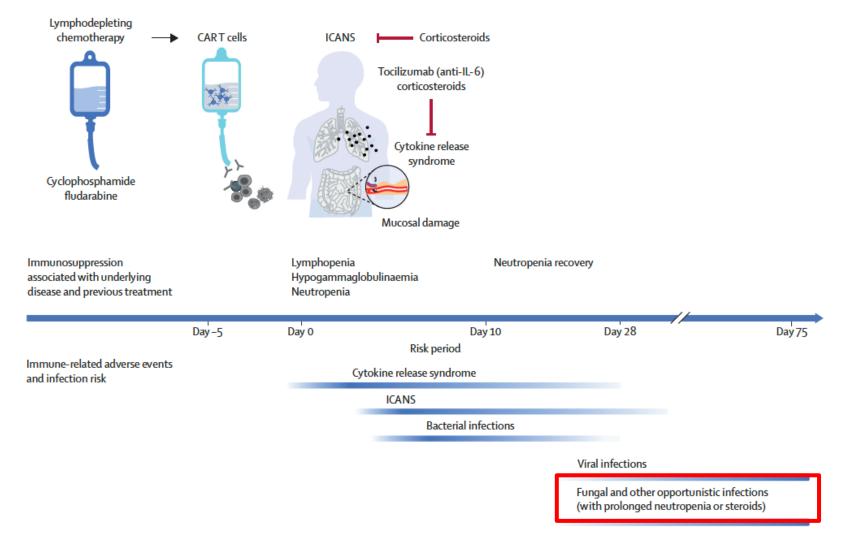
BV, brentuximab vedotin; CID, clinically documented infection; COPD, chronic obstructive pulmonary disease; IA, invasive aspergillosis; IFD, invasive fungal disease; MDR, multidrug resistance; MID, microbiologically documented infection; PJP, *Pneumocystis jirovecii* pneumonia.

Marchesini, et al. Leuk Lymphoma. 2020;61:3002-3005.

Risk and impact of invasive fungal infections in patients with multiple myeloma

Acren	Unidentified, 14.3% nonium spp, 14.3%		•		mong 623 N 2 probable/	•		•
	Predictive variables	Univariate analysis			Multivariate analysis ^a			
		HR (95% CI)	<i>p</i> value		HR (95% CI)	p value		
	Chemotherapy						—	
	Alkylating agent except melphalan in ASCT	0.46 (0.16-1.32)	0.146					
	Anthracycline	1.15 (0.38-3.42)	0.806					
_ _	High-dose steroid	7.93 (2.31–27.22)	0.001		2.46 (0.45–13.41)	0.298		
	Neutropenia	4.48 (1.24–16.16)	0.022		1.46 (0.26-8.08)	0.667		
	IMiDs	0.75 (0.26-2.17)	0.599					
Trichosporon as	Velcade	1.05 (0.36-3.02)	0.932					
Candida par	rapsilosis, 6.7%		\geq 12 months	6	1.99 (0.89–4.42)	■		
			Allogeneic SCT	5	8.44 (3.51–20.26)	H		
(Candida glabrata, 13.3%		0–3 months	3	49.84 (16.08–154.50)		⊢	
			3–6 months	0	_			
			6–12 months	1	15.59 (2.20–110.70)	⊢		
			\geq 12 months	1	2.35 (0.33-16.70)	⊢		
Tsai et al, Ann Hemato	ol 2020				0.1	1.0	10.0	100.0

Per 1,000 person-months (95% CI)


Low rates of IFD in MM patients managed with new-generation therapies: A multicentre cohort study

Variable	IFD N = 5 (%)	No IFD N = 143 (%)	P-value	Patient	MM treatment	Disease Response	Lines of Therapy	Neutropenia	Cumulative corticosteroid dose (30 days/60 days) mg	Antifungal Prophylaxis	
Sex				59 M	Pomalidomide Isatuximab Dexamethasone	Progressive Disease	7	No	533/ 1066	None	
Male	3 (60.0)	89 (62.2)	.92								
Female	2 (40.0)	54 (37.8)		62 F	Pomalidomide Dexamethasone	Complete Response	5	No	533/ 1066	None	
Age (median, IQR)	58 (58-64)	68 (61-73)	.12								
years				63 M	Pomalidomide,	Progressive Disease	8	No	933/ 1600	None	
Previous lines of therapy (median, IQR)	5 (5-7)	3 (2-4)	.04		Carfilzomib, Elotuzumab Dexamethasone						
Treatment regimen ^a				56 F	Carfilzomib, Thalidomide	Partial Response	2	No	533/ 1333	None	
mAb-based	3 (60.0)	40 (28.1)	.19		Dexamethasone						
combination ^b	0 (00.0)	40 (20.1)	.17	69 M	Daratumumab Melphalan	Progressive disease	5	Νο	586/ 1119	None	
IMiD-PI	1 (20.0)	43 (30.0)	.63								
IMiD-based	1 (20.0)	19 (13.3)	.67								

IFD rate remains low in patients with MM heavily treated with new-generation therapies, including monoclonal antibodies. There is insufficient evidence to support the routine use of antifungal prophylaxis. In this era, patients with IFD do not appear to have traditional risk factors, such as prolonged neutropenia, but risk from cumulative immune suppression due to increasing lines of therapy requires further evaluation

CAR-T

CAR T-cell therapy for lymphoid malignancies: Is there an excess risk for infection?

	Hill et al (2	Hill et al (2018) ¹³		Park et al (2018) ¹⁴ Logue et al (2020) ¹⁵		Vora et al (2020)⁵		Strati et al (2020) ^v	Cordeiro et al (2020) ¹⁸	
	Early (≤28 days)	Late (>28 days)	Early (≤30 days)	Late (>30 days)	Early (≤30 days)	Late (>30 days)	Early (≤28 days)	Late (>28 days)	Any	Late (>90 days)
Number of patients	133	119	53	32	85	70	83	48	31	86 (data for late infections were available for 54 [63%] patients, who were mostly outpatients not diagnosed microbiologically)
All infections	43 in 30 (23%) patients	23 in 17 (14%) patients	26 in 22 (42%) patients	15 in 10 (31%) patients	38 in 31 (37%) patients	32 in 31 (44%) patients	37 in 33 (40%) patients	12 in 11 (23%) patients	71 in 24* (77%) patients	153 in 33 (61%) patients
Fungal infections	6 in 4 (3%) patients	2 in 2 (2%) patients	4 in 4 (8%) patients	1 in 1 (3%) patients	2	0	1	0	4	4
Invasive candidiasis	4¶¶	1	0	0	1	0	0	0	0	1***
Invasive pulmonary aspergillosis	1†††	1	2	1	0	0	0	0	0	2
Other‡‡‡	1	0	2	0	1	0	1	0	4	1

IFIs are really rare in patients undergoing CAR T therapy!

CAR-T

Safety of allogeneic HSCT in adults after CD19-targeted CAR-T therapy

	ALL (n = 19)	NHL/CLL (n = 13)	Entire cohort (N = 32)
Viral and fungal infections			
Parainfluenza	2 (10.5)	0 (0.0)	2 (6.2)
HSV-1 stomatitis	1 (5.3)	0 (0.0)	1 (3.1)
Adenovirus hepatitis	1 (5.3)	0 (0.0)	1 (3.1)
CMV gastroenteritis	1 (5.3)	2 (15.4)	3 (9.4)
RSV	1 (5.3)	0 (0.0)	1 (3.1)
Aspergillosis	3 (15.8)	0 (0.0)	3 (9.4)
Other fungal	1 (5.3)	2 (15.4)	3 (9.4)
Toxoplasmosis	1 (5.3)	0 (0.0)	1 (3.1)

3 proven aspergillosis and 3 probable IFIs Incidence: 6/32 = 18% ! 2/6 patients with IFIs died

ALL, acute lymphoblastic leukaemia; CLL, chronic lymphocytic leukaemia; CAR-T therapy, chimeric antigen receptor T-cell therapy; CMV, cytomegalovirus; HSV, herpes simplex virus; IFI, invasive fungal infection; NHL, Non-Hodgkin lymphoma; RSV, respiratory syncytial virus Shadman, et al. Blood Adv. 2019;3:3062–3069. CAR-T

Infectious complications in patients with relapsed refractory multiple myeloma after BCMA CAR T-cell therapy

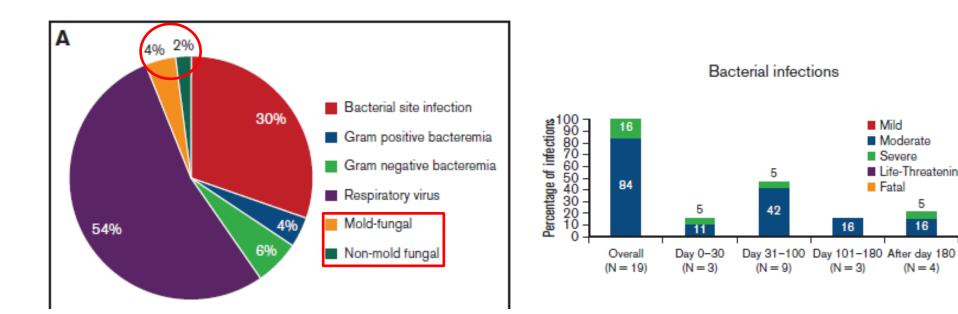
Kambhampati S et al. Blood Adv 2022

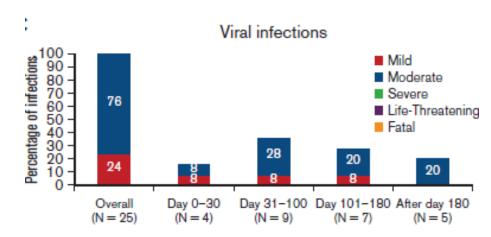
Mild

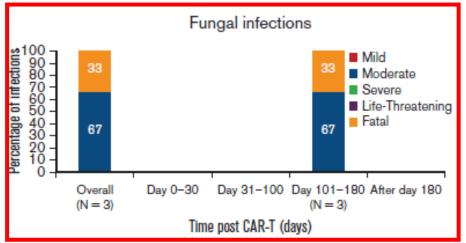
Fatal

16

(N = 3)


Moderate Severe


Life-Threatening


5

16

(N = 4)

Open Question for IFI risk

- In AML will these new drugs be able to modify the antifungal prophylactic approach? should we expect a return to the "past"?
- In ALL the addition of monoclonal antibodies to conventional chemotherapy or the use of more aggressive chemotherapies should increase the IFI incidence? What we do? To find a better antifungal prophylaxis? To make a timely diagnostic work-up? To increase the use of empirical antifungal therapy?
- In CLL/iNHL has the use of the "new" drugs increased the IFI incidence? Is necessary to start an antifungal prophylaxis? In all patients?
- From literature data, among hematological diseases excluding acute leukemia, MM patients seem those with a higher incidence of IFI? When these patients must be considered at risk? What must we do?