Modelli innovativi di gestione delle infezioni da germi MDR in ambito ospedaliero ed extraospedaliero

Marianna Meschiari

Clinic of Infectious Diseases

University of Modena and Reggio Emilia

°CONGRESSO

MODENA E REGGIO EMILIA

Disclosure

• Scientific boards, travel expenses, research grants

- MSD
- Angelini
- Pfizer
- ViiV
- Shionogi
- Menarini
- BioMérieux

AMR

we may be in the darkest hour before the dawn

The 3 most critical public health issues of our time are climate change and environmental destruction, pandemics, and antimicrobial resistance.

The top 3 action items most urgently required :

1) the need for antibiotics: the major problem is that we often use antibiotics as a substitute for infection control, water, and sanitation rather than as a corollary to these.

2)Providing access to new drugs and vaccines

3)Change behavior and social norms

We often prefer tackling problems after they've become a serious threat.

Sometimes, we think it's the job of somebody else..

AR-ISS 2022: sorveglianza nazionale dell'Antibiotico-Resistenza

Staphylococcus aureus (33,5% vs 30,5% del 2022),
Per Enterococcus faecium (11,1% al 30,7% nel 2022).
Escherichia coli ESBL (24,4% vs 24,2% nel 2022)
Klebsiella pneumoniae R-carbapenemi (33,2% vs 25%)
Pseudomonas aeruginosa (da 17,2% vs 16,4% nel 2022)
stabile in Acinetobacter spp. (88,5%).

CRKP (%)

1.3 - 7.1

13.3 - 18.9 23.6 - 41.8

15.6

CREC (%)

10.9 - 21.6

21.7 - 25.1

25.2 - 31.8

Piperacillin/ tazobactam-resistant and meropenem-resistant non-Morganellaceae Enterobacterales (NME) and *Pseudomonas aeruginosa* collected from patients with <u>lower respiratory tract infections</u> in Europe: SMART 2018–20

Carbapenemase rates among P. aeruginosa isolates, by country

Karlowsky JA, JAC Antimicrob Resist. 2023 Jan 20;5(1):dlad003.

Comparison of EuSCAPE and EURECA surveys of carbapenem resistant *K.pneumoniae*

Fig. 2. Kaplan—Meier curves of event (bacteraemia)-free survival among the three study groups (KPC versus VIM versus NDMrectal carriers). Red line: NDM-group. Blue line: KPC-group. Green line: VIM-group.

NDM-Kp was associated with increased risk of BSI compared with KPC-Kp.

This finding seems to be strongly related to the high-risk clone **ST147**.

Budia Silvia et al; bioRxiv preprint doi: https://doi.org/10.1101/2023.09.05.556311; this version posted September 5, 2023 Falcone M, Clin Microbiol Infect. 2022 Feb;28(2):298.e1-298.e7. doi: 10.1016/j.cmi.2021.06.031.

а

Risk for MDR GNB carriers developing an infection

Carriers	BSI
ESBL	3-25%
CRE	3-17%
CR Acinetobacter	40%
DTR P.aeruginosa	43%
MRSA	15-30%
VRE	8%

Means of transmission for pathogen guide IPC strategies

Courtesy of Dr. José María López Lozano Chief. Preventive Medicine/ Infection Control Unit,

Hospital Vega Baja Orihuela-Alicante

And Meschiari personal opinion

Mechanism of Trasmission	MRSA	VRE	E.Coli ESBL+	КРС	CRPA	CRAB
CLONAL	Very important	Very important	Occasional only	Very important	mixed	mixed
Patient as source	Very important	Very important	Occasional only	Very important	Occasional only	Very important
Enviromental source	Occasional only	Important	Occasional only	Occasional only	Very important	Very important
Antibiotic use	Occasional only	Occasional only	Very important	Very important	Very important	???

Compliance to Infection Prevention and Control (IPC) measures

EUCIC StopNegative group; Analysis of the challenges in implementing guidelines to prevent the spread of multidrug-resistant gram-negatives in Europe. BMJ Open. 2019 May 19;9(5):e027683.

HOW to implement HAND HYGIENE

The first WHO global survey on infection prevention and control in health-care facilities

Sara Tomczyk*, Anthony Twyman*, Marlieke E A de Kraker, Ana Paula Coutinho Rehse, Ermira Tartari, João Paulo Toledo, Alessandro Cassini, Didier Pittet, Benedetta Allegranzi

Summary

Background WHO core components for infection prevention and control (IPC) are important building blocks for effective IPC programmes. To our knowledge, we did the first WHO global survey to assess implementation of these programmes in health-care facilities.

1/4 of hospitals in low-income countries had access to hand hygiene stations at points of care

Utilizzabile su tutti i dispositivi mobili connessi ad internet (via browser) – nessuna barriera di sistema operativo.

Centralizzazione dei dati, in tempo reale.

oa

ALCUNI ESEMPI PRATICI SUL CAMPO

Piattaforma regionale

- Feedback con i dati regionali per il confronto tra istituzioni.
- Supporto centrale all'uso (formazione degli operatori e supporto tecnico).

Feedback

- Immediato su App restituzione dei risultati dell'osservazione in tempo reale all'equipe valutata.
 - Dashboard/Report Aziendale che permette di selezionare e aggregare dati per creare descrittive personalizzate – monitoraggio delle rilevazioni in tempo reale; feedback a livello di unità (reparto, ospedale, azienda) anche nel tempo (valutazione dei trend).

SCREENING STATEGIES: WHO HOW AND WHEN?

Real life questions: Multidrug-resistant Gram negatives

- 1. Should I screen my patient before surgery (all vs specific one)?
- 2. Should I implement target screening versus universal screening?
- 3. How I define high endemic setting?
- 4. When I should perform the screening?

ESCMID PUBLICATIONS

10.1111/1469-0691.12427

ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients

E. Tacconelli¹, M. A. Cataldo², S. J. Dancer³, G. De Angelis⁴, M. Falcone⁵, U. Frank⁶, G. Kahlmeter⁷, A. Pan^{8,9}, N. Petrosillo², J. Rodríguez-Baño^{10,11,12}, N. Singh¹³, M. Venditti⁵, D. S. Yokoe¹⁴ and B. Cookson¹⁵

RECTAL SCREENING: who & when

		с	:PE burden	Target Screening «Patients»	Pros	Cons	Universal Screening Target to high-risk
Screening strategy	No cases	Sporadic cases	Local transmission established or CPE ender	mic	6		areas
Admission from high-risk settings*	Ŷ	V	Ŷ	Patient-level:		Specialty-level	
Admission to high-risk units [†]	Y	V	Ŷ	 more "accurate" (deterrite 	cts more)	 Pragmatic, easi 	er to implement, less
Single or periodic point prevalence surveys	С	C	Ŷ	 Screening patients of a very high rate of 	low-risk areas has	time-consuming	ek areas are hube of
Screening of contacts [‡] of confirmed cases	n/a	V	Ŷ	when risk factors are of	considered	transmissions	an areas are nuos or
Opportunistic screening (e.g. all faecal specimens)	С	С	Ŷ	 Time-consuming (surv 	eys etc.)	Detects only 50	0% of the CPE burden,
Universal Screening	for CRC)s	Without risk faStarting to per	ctor check list at form "rectal colo	admission nization" <mark>po</mark> i	int prevalenc	e survey
In all high-risk a	reas				Rectal scre • At adm	ening ission	
lla V, et al. J Hosp Infect.Journal of Infection 84 (commendations for the control of carbapenema terobacterales (CPE)	2022) 119 se-produ	9–130 cing	If p	ositive, patients an isolation or at leas	e considered p t for the lengt	bositive for a yea th of the patient	ar from the first t's hospital stay.

Australian Commission on Safety and Quality in Health Care 2021 S. Basri et al. Duration of intestinal colonization; Antimicrobial Resistance & Infection Control 2023, 12(Suppl 1):O49

The median time to intestinal clearance was **179** (IQR 26–502)

Systematic review: Screening for MDR Gram-negative bacteria

Syst. review on screening

- 50% used screening of high-risk areas
 - 14% used screening of high-risk patients only in high-risk areas
- 11% used screening of high-risk patients
- 10% used complete admission screening for all patients

Syst. review on screening

- Overall prevalence was 13.8% (typical variations according to regions)
 - Highest for E. coli 9% and P. aeruginosa 7.5%
 - Klebsiella only 4%
- Patients who acquired MDR-GN during hospitalisation was 9.4%
 Highest risk of acquisition was for Klebsiella 26%, Pseudomonas 18% and E. coli 15%
- Risk of progression to infection among colonised patients was 11% with higher values reported for Klebsiella 18%

and first it. Second for ferrors and featured are segme

What is the best screening strategy?

Impact of a Rapid Molecular Test for Klebsiella pneumoniae Carbapenemase and Ceftazidime-Avibactam Use on Outcomes After Bacteremia Caused by Carbapenem-Resistant Enterobacterales

Satlin MJ, Clin Infect Dis. 2022 Dec 19;75(12):2066-2075. Di Pilato V, Clin Microbiol Infect. 2023 Apr;29(4):537.e1-537.e8. Should I have used rapid test for screening and infection diagnosis?

Conclusions: It depends on the target***

- prevalence of colonization,
- types of circulating carbapenemases,
- wards with higher incidence
- access to Clinical Microbiology laboratory
- screening of carriers vs infections
- overall costs

AOU Modena

ADDICTIONAL SCREENING STATEGIES

SUPPORT SCREENING STRATEGIES FOR MDR Carriers IN OUR HOSPITAL LEVEL

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena

CRE universally (high risk Units) on rectal swab/ faeces on admission

ESBL-R-E: for patients awaiting liver transplantation or for pre-reception colorectal surgery **FQR-R-E** for haematological inpatients and those waiting for a bone marrow transplant

ESBL

CARB

Righi E, Clin Microbiol Infect. 2023 Apr;29(4):463-479. Satlin et al; Clinical Infectious Diseases[®] 2021;73(7):1257–65

Randomised controlled trials of digestive decolonisation for ESBL/ or CRE *Enterobacterales*

Study	Microorganism(s)	Patient profile	Intervention	Comparator
Saidel-Odes 2012	Carba-R K.pneu.	Hospitalised	COL+GEN, 7 days	Placebo
Huttner 2013	ESBL-Enterob. (75% E.coli)	Hospitalised	COL+ NEO, 10 days	Placebo
Stoma 2018	MDR/XDR GNs (60% Enterob.)	Haematological	COL, 14 days	No intervention
Fariñas 2021	ESBL, AmpC, CP Enterob. (50% E.coli)	SOT recipients	COL+NEO; 14 days	No intervention

Short-term period, having no long-term sustainable effects!

Some more basic research and weel-design clinical studies are needed for other options: *Phages, CRISPR-car system*)

Saidel-Odes L et al; Infect Control Hosp Epidemiol. 2012 Jan;33(1):14-9 Huttner B, J Antimicrob Chemother. 2013 Oct;68(10):2375-82. Stoma I, Mediterr J Hematol Infect Dis. 2018 May 1;10(1):e2018030. Fariñas MC, Clin Microbiol Infect. 2021 Jun;27(6):856-863. doi: 10.1016/j.cmi.

Decolonisation strategies: SDD & SOD

35 years after the first publication...

Ecological effects of selective oral

case-control study over 5 years

CU-acquired infections during pre- with SOD (n = 1694)

Ventilator-associated pneumonia

Bacteremia

Urinary tract infections

decontamination on multidrug-resistance

5034 patients were eligible

14 10.2

13 8.92

10

Incidence den

sity/1000 days

6.79

Table 6 Health-care-associated infections in both groups after propensity score matching

Number

243

218

162

*Days at risk with mechanical ventilation: 23,876 days with SOD, 21,467 days without SOD

ORIGINAL

 The SDD regimen consists of four times daily Orabase oral paste with 2% polymyxin B, amphotericin B and tobramycin.

• SOD: 10ml of a suspension containing 500 mg amphotericin B, 100 mg polymyxin B and 80 mg tobramycin is administered four times daily in the gastric tube or swallowed in patients without a gastric tube.

Buitinck et al. Critical Care (2019) 23:208

ECMO Bowel hypoperfusion Immunocompromized Trasplant

SDD digestive solution and oral paste.

mouthpas

Systemic

antibiotics

Suspension

(naso-gastric tube)

SOD

SDD

Role of Selective Digestive Decontamination in the Prevention of Ventilator-Associated Pneumonia in COVID-19 Patients: A Pre-Post Observational Study

Colistin

Tobramycin Amphotericin/Nysta

Colistin

Tobramycin

photericin/Nysta

Patients (frac

Emanuela Biagioni¹, Elena Ferrari¹, Ilenia Gatto¹, Lucia Serio¹, Carlotta Farinelli¹, Irene Coloretti¹, Marta Talamonti¹, Martina Tosi¹, Marianna Meschiari², Roberto Tonelli³, Claudia Venturelli⁴, Cristina Mussini², Enrico Clini³, Mario Sarti⁴, Andrea Cossarizza⁵, Stefano Busani¹ and Massimo Girardis ^{1,*,†} on behalf of the MO-COVID-19 Working Group

Table 7 Incidence rate of death in the ICU in both groups Death in the ICU* With SOD Without SOD p value No % Incidence den-No % Incidence density/1000 days sity/1000 days Before propensity score matching 759/3340 23 8.8 509/1694 30 15.8 < 0.01 After propensity score matching 478/1694 28 13.2 509/1694 30 15.8 < 0.01 *Days at risk in the ICU: 86,281 and 36,167 days with SOD, respectively; 32,177 days without SOD

Without SOD (n = 1694)

96

18

8

Number

of cases

302

182

138

sive Care Med (2018) 44:1165-1168 https://doi.org/10.1007/s00134-018-5183-

ICU, intensive care unit; SOD, selective oropharynx decontamination

Boacheng Wang et al, Intensive Care Med 2022

N.L. Plantinga et al. / Clinical Microbiology and Infection 26 (2020) 485e491

Dynamics of carbapenemase-producing Enterobacterales intestinal colonisation in the elderly population after hospital discharge, Italy, 2018-2020

A longitudinal study was conducted in two Italian cities (March 2018 to September 2020) enrolling 137 patients aged ≥65 years with CPE intestinal colonisation at hospital discharge (FU 4 months).

28/65 patients (43.1%) remained colonised at Month 4; 16/42 (38.1%) and 5/28 (17.9%) were found colonised up to Months 8 and 12, respectively.

Colonisation persistence was more frequent in patients with bacteraemia or complicated urinary tract infection while in hospital and in those staying in long-term care facilities (LTCFs).

Identification of patients at higher risk of persistent intestinal carriage after hospital discharge can prompt control measures to limit the transmission of CPE in the community, especially in LTCF settings.

Tinelli M, Int J Antimicrob Agents. 2022 Jun;59(6):106594.

An Outpatient Clinic as a Potential Site of Transmission for an Outbreak of New Delhi Metallo-β-Lactamase– producing Klebsiella pneumoniae Sequence Type 716: *A Study Using Whole-genome Sequencing*

- They identified the outpatient clinic as the probable transmission site bridging the 2 outbreaks.
- This study highlight the importance of implementing adequate infection control measures in outpatient settings, especially as healthcare delivery moves from acute care facilities to outpatient clinics.

An Outpatient Clinic as a Potential Site of Transmission for an Outbreak of New Delhi Metallo-β-Lactamase– producing *Klebsiella pneumoniae* Sequence Type 716: A Study Using Whole-genome Sequencing

Amélie Heinrichs,¹ Maria Angeles Argudín,¹ Ricardo De Mendonça,¹ Ariane Deplano,¹ Sandrine Roisin,¹ Magali Dodémont,¹ Julien Coussement,¹ Lorenzo Filippin,² Jill Dombrecht,³ Katrien De Bruyne,³ Te-Din Huang,⁴ Philip Supply,⁵ Baudouin Byl,^{5,7} Youri Glupczynski,⁴ and Olivier Denis^{1,5}

Heinrichs A, Clin Infect Dis. 2019 Mar 5;68(6):993-1000.

Decolonisation strategies for outpatients

ORIGINAL ARTICLE FREE PREVIEW

Decolonization in Nursing Homes to Prevent Infection and Hospitalization

Loren G. Miller, M.D., M.P.H., James A. McKinnell, M.D., Raveena D. Singh, M.A., Gabrielle M. Gussin, M.S., Ken Kleinman, Sc.D., Raheeb Saavedra, A.S., Job Mendez, M.D., R.N., Tabitha D. Catuna, M.P.H., James Felix, B.S., Justin Chang, B.S., Lauren Heim, M.P.H., Ryan Franco, B.A., <u>et al.</u>

28,956 residents; chlorhexidine for all routine bathing and showering and administration of nasal povidone– iodine twice daily for the first 5 days after admission and then twice daily for 5 days every other week.

- Among the transfers to a hospital in the routine-care group, 62.2% (the mean across facilities) were due to infection during the baseline period and 62.6% were due to infection during the intervention period (risk ratio, 1.00; 95% confidence interval [CI], 0.96 to 1.04).
- The corresponding values in the decolonization group were 35.5% and 32.4% (risk ratio, 0.92; 95% CI, 0.88 to 0.96), for a difference in risk ratio, as compared with routine care, of **14.6%** (95% CI, 9.7 to 19.2).
- The number needed to treat was **9.7 to prevent one infection-related hospitalization** and 8.9 to prevent one hospitalization for any reason.

CONCLUSIONS

In nursing homes, universal decolonization with chlorhexidine and nasal iodophor (10% Povidone-Iodine) led to a significantly **lower risk of transfer to a hospital due to infection than routine care**.

News for outbreak definition and management

Increase in Plasmid bearing multiple carbapenemases

Characterization of broad host range INCC plasmid bearing multiple carbapenemases: KPC-2, NDM-1, AND VIM-24

R. Sierra^{1,*}, J. C. García Betancur², E. de la Cadena², M. Roch³, L. C. Espitia-Acero², M. V. Villegas², D. O. Andrey¹ ¹Division of Infectious diseases, Geneva University Hospitals, Geneva, Switzerland, ²Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogota, Colombia, ³Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland

Correspondence: R. Sierra

Antimicrobial Resistance & Infection Control 2023, 12(Suppl 1):O47

Conclusion:

- The acquisition of multiple carbapenemases is increasingly reported.
- The identification **of broad** host range plasmids with multiple carbapenemase genes represent a strong potential for horizontal antibiotic resistance spread.
- Long-read sequencing technology is allowing for refined analysis of plasmids.

			(21/0/2020)	
Carbapenemasi	n.	%	Feci (28/06/2023)	ST 14
КРС	214	70.2%	Feci	ST 307
ΟΧΑ	32	10.5%	(07/09/2023)	51 507
NDM	26	8.5%	uovo Ceppo	
VIM	8	2.6%	(19/09/2023)	ST 54
MBL non specificata	4	1.3%		
multiplo*	15	4.9%		
carbapenemasi non specificata	6	2.0%		
Totale	305	100%		

■ NDM ■ VIM ■ Totale complessivo

Sequence Type (ST)

ST 323

Materiale biologico

(data isolamento)

Feci

(21/0/2023)

tione del 26/09/2023

*KPC+OXA=7; KPC+VIM=2; KPC+MBL=1; NDM+OXA=4; NDM+VIM=1

CRO and plasmid transfer in hospitals

Check for update

CPE and plasmid transfer in hospitals – what can we do? A rapid reflection from ICPIC 2023

ARTICLE

https://doi.org/10.1038/s41467-022-30637-5 OPEN

Whole genome sequencing reveals hidden transmission of carbapenemase-producing *Enterobacterales*

Kalisvar Marimuthu () ^{1,2,3 M}, Indumathi Venkatachalam⁴, Vanessa Koh^{1,2}, Stephan Harbarth⁵, Eli Perencevich^{6,7}, Benjamin Pei Zhi Cherng^{3,4,8}, Raymond Kok Choon Fong⁹, Surinder Kaur Pada¹⁰, Say Tat Ooi¹¹, Nares Smitasin^{3,12}, Koh Cheng Thoon¹³, Paul Anantharajah Tambyah¹², Li Yang Hsu^{3,14,15}, Tse Hsien Koh^{4,8}, Partha Pratim De², Thean Yen Tan⁹, Douglas Chan¹⁰, Rama Narayana Deepak¹¹, Nancy Wen Sim Tee¹², Andrea Kwa^{4,16,17}, Yiying Cai^{4,15}, Yik-Ying Teo^{14,15}, Natascha May Thevasagayam^{1,2}, Sai Rama Sridatta Prakki^{1,2}, Weizhen Xu^{1,2}, Wei Xin Khong², David Henderson¹⁸, Nicole Stoesser () ¹⁹, David W. Eyre () ²⁰, Derrick Crook¹⁹, Michelle Ang¹, Raymond Tzer Pin Lin () ^{1,12}, Angela Chow () ^{2,14,21}, Alex R. Cook¹⁴, Jeanette Teo¹², Oon Tek Ng () ^{1,2,21 M} & Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group*

Article

Probable Three-Species In Vivo Transfer of *bla*_{NDM-1} **in a Single Patient in Greece: Occurrence of NDM-1-Producing** *Klebsiella pneumoniae, Proteus mirabilis,* **and** *Morganella morganii*

MDPI

Georgios Meletis ^{1,*}, Andigoni Malousi ², Areti Tychala ¹, Angeliki Kassomenaki ¹, Nikoletta Vlachodimou ¹, Paraskevi Mantzana ¹, Simeon Metallidis ³, Lemonia Skoura ¹ and Efthymia Protonotariou ¹

RESEARCH LETTER - Pathogens & Pathogenicity Horizontal transfer of the bla_{NDM-1} gene to Pseudomonas aeruginosa and Acinetobacter baumannii in biofilms

Windy D. Tanner^{1,*,†}, Robyn M. Atkinson², Ramesh K. Goel³, Mark A. Toleman⁴, Lowell Scott Benson⁵, Christina A. Porucznik⁵ and James A. VanDerslice⁵

42% clonal transmission criteria vs 44.8% plasmid-mediated transmission criteria

Possible evidences for:

- Indirect trasmission (no temporal overlap in patients' admission period)
- **Biofilm transfer** of NDM-encoding plasmids to NFGNB from *Enterobacterales spp.* blaNDM-1 transconjugants.
- in vivo transfer of a blaNDM-1-containing cluster among different gram negative

Marimuthu, K., Nat Commun 13, 3052 (2022). Antibiotics 2023, 12, 1206. https://doi.org/10.3390/antibiotics12071206

The sink as a potential source of transmission of carbapenemase-producing gram negative organisms

0723	C.freundii OXA-48+NDM (18/5/2015)	-
1188	C.freundii CPE drain sink 6 (30/7/2015)	(
1336	C.freundii CPE drain sink 6 (24/8/2015)	(
1381	C.freundii OXA-48+NDM (30/8/2015)	
1168	C.freundii CPE drain sink 1 (29/7/2015)	
0762	C.freundii OXA-48+NDM (26/5/2015)	
1042	C.freundii CPE drain sink 6 (8/7/2015)	
1664	C.freundii CPE OXA-48 (27/10/2014)	
1338	C froundii CPE drain sink 1 (24/8/2015)	

13/1302 C.freundii OXA-48 (11/9/2013)

7,039 search results (11 included): sink removal (n=3), water filters (n=5), sink trap heating and vibration devices (n = 3), new tap devices (n = 2) and hopper covers (n=1).

G.-B. Fucini1,*, Are interventions on sinks in the ICU effective to reduce risk of infection or colonization with gramnegative bacteria? A systematic review of the literature; Antimicrobial Resistance & Infection Control 2023, 12(Suppl 1):P162

A better management of sinks and drains (or even getting rid of them completely) will be a vital part of the solution.

Antimicrobial stewardship is a big factor here!

De Geyter et al. Antimicrobial Resistance and Infection Control (2017) 6:24 Bitar I, Antimicrob Agents Chemother 63:e02609-18

carbapenem-resistant *Acinetobacter baumanii* (CRAB) control

Priority role of *A. baumannii* colonization on the risk to develop CRAB infections

Risk factors	OR (95% CI)	P value
CCI	1.34 (1.02–15.2)	0.026
COVID-19	2.32 (1.72–15.8)	<0.001
Hypertension	1.87 (0.91–3.87)	0.089
SAPS II	2.5 (0.88–11.5)	0.091
Timing of ICU to colonization	1.2 (0.84–9.9)	0.122
Multisite >1	2.4 (1.2-4.90)	0.016
Mechanical ventilation	2.34 (1.1–5.02)	0.024

Infection

https://doi.org/10.1007/s15010-021-01643-4

ORIGINAL PAPER

Multidrug-resistant *Acinetobacter baumannii* infections in COVID-19 patients hospitalized in intensive care unit

 $\label{eq:alessandro} Alessandro\,Russo^{1,2} \cdot Francesca\,Gavaruzzi^2 \cdot Giancarlo\,Ceccarelli^2 \cdot Cristian\,Borrazzo^2 \cdot Alessandra\,Oliva^2 \cdot Francesco\,Alessandri^3 \cdot Eugenia\,Magnanimi^3 \cdot Francesco\,Pugliese^3 \cdot Mario\,Venditti^{2} \circ$

Cogliati Dezza F et al JAC Antimicrob Resist, 2023

Risk factors for CRAB colonization in hospital setting

Table 2 Univariate and multivariate analysis of risk factors and outcomes related to CRAB colonization

Variables	Univaria	ite analysis	Multivariate analysis			
	OR	95% CI	P value	OR	95% CI	P value
Age (years)	0.99	0.97-1.01	0.767			
Sex, male	0.71	0.34-1.49	0.378			
LOS	1.02	1.01-1.04	< 0.001	1.03	1.01-1.05	0.002
ICU stay	3.2	1.46–6.99	0.004			
^a Deaths	5.5	1.77-17.01	0.003			
Provenance of patient at admission						
Home	Ref.					
LTHCF	16.14	1.91–136	0.011			
Other hospital	0.76	0.14-3.99	0.754			
Recent hospitalization	3.02	0.98-9.34	0.054			
Charlson Comorbidity Index	1.15	0.99-1.33	0.053			
McCabe score, nonfatal vs. fatal disease and rapidly fatal disease	2.12	1.08-4.14	0.027	5.45	1.87-15.89	0.002
Major surgery \leq 30 days before hospitalization	1.34	0.21-8.37	0.748			
Major surgery during hospitalization	1.75	0.79–3.87	0.167			
Bedridden	5.29	1.85-15.12	0.002			
Permanent devices	4.52	1.55-13.22	0.006	10.15	2.27-45.39	0.002
Presence of extrinsic risk factors						
Central vascular catheterization	10.37	3.93-27.32	< 0.001			
PICC or midline	4.52	1.55-13.22	0.006			
Urinary catheter	7.23	2.91-17.96	< 0.001	4.96	1.52-16.19	0.008
Naso-gastric tube	4.16	1.57–10.99	0.004			
PEG	11.12	1.25-98-33	0.030			
Tracheostomy	10.54	2.79-39.75	0.001			
Mechanical ventilation	3.38	1.19–9.61	0.022	40.01	4.05-395.1	0.002
Dialysis	2.07	0.40–10.70	0.385			
Corticosteroid therapy	2.75	1.20-6.29	0.016			
Antibiotics during hospitalization	8.26	1.86-36-72	0.005			
3GC	1.90	0.90-4.01	0.089			
Carbapenems	6.66	2.19-20.20	0.001	5.39	1.14-25.44	0.033
Penicillins	1.93	0.90-4.11	0.088			
Fluoroquinolones	2.09	0.86-5.08	0.101			
Glycopeptides	3.5	1.44-8.48	0.006			
Polytherapy	4.65	2.13-10.14	< 0.001			

Meschiari et al. Antimicrob Resist Infect Control (2021) 10:69 https://doi.org/10.1186/s13756-021-00919-6

RESEARCH

Antimicrobial Resistance

Open Access

Risk factors for nosocomial rectal colonization with carbapenem-resistant *Acinetobacter baumannii* in hospital: a matched case–control study

Geriatric department

Devices (UCs and CVCs) A fatal disease A longer LOS

Internal medicine department

Partial disabilities or bedridden status Prolonged hospitalization, Previous admission to the ICU (+MV) Permanent devices, and catheters Current antibiotic therapy (antibiotic polytherapy)

ICU

McCabe Score (a fatal or rapidly fatal disease) Use of t3GC and carbapenems (OR: 15 and 33)

Meschiari et al. Antimicrob Resist Infect Control (2021) 10:123 https://doi.org/10.1186/s13756-021-00990-z

RESEARCH

Antimicrobial Resistance and Infection Control

Implement IPC as a Bundle

A five-component infection control bundle to permanently eliminate a carbapenem-resistant Acinetobacter baumannii spreading in an intensive care unit

Marianna Meschiari^{1*}, José-María Lòpez-Lozano², Vincenzo Di Pilato³, Carola Gimenez-Esparza⁴ Elena Vecchi⁵, Erica Bacca¹, Gabriella Orlando¹, Erica Franceschini¹, Mario Sarti⁶, Monica Pecorari⁷ Antonella Grottola⁷, Claudia Venturelli⁶, Stefano Busani⁸, Lucia Serio⁸, Massimo Girardis⁸, Gian Maria Rossolini^{9,10,11}, Inge C. Gyssens¹², Dominique L. Monnet¹³ and Cristina Mussini¹

1.Active surveillance: Extended screening.

2.Contact precaution measures for all patients until discharge, independently of CRAB status

3.Environmental sampling

4.Cycling radical cleaning and disinfection of all rooms, areas and patients

5.Rapid Genotyping

Infection Control and Hospital Epidemiology, Vol. 20, No. 7 (July 1999), pp. 458-460

	Muestras clínicas					
Organismo	Heces/	Perineal	Faringe	Nasal	Otras	
	Rectal					
Staphylococcus aureus resistente a meticilina	+ ^a	+++	+++	++++	++ ^b	
Enterococcus spp. resistente a glucopéptidos	++++	++++	(+)	-	++	
Enterobacterias productoras de BLEE	++++	++++	+	-	++	
Acinetobacter baumannii multirresistente	++++	++	++++ ^c	-	+++ ^{d, e}	
Pseudomonas aeruginosa resistente a carbapenemas por producción de MBL	+	+++	++++ ^c	-	+++ ^d	

A. WGS of CRAB isolates. Labels were configured to represent patient (P1-7) and environmental(E1-7) samples

A

₿

©

0 E

patient to a clear

bed/stretcher

0

0 E

A (1)

Open Access

5-Step Process

CRAB multi-site Active surveillance

Universal screening on admissions for CRAB by rectal swabs and repeated weekly, adding **3 more sites** (axilla, groin and endotracheal), for all the patients admitted in ICU (for more than 24 hours)

A recently published program by Valencia-Martin et al. found a sensitivity of 96% combining rectal and pharyngeal swabs compared to 78% of rectal swab only

	Muestras clínicas					
Organismo	Heces/	Perineal	Faringe	Nasal	Otras	
	Rectal					
Staphylococcus aureus resistente a meticilina	+ ^a	+++	+++	++++	++ ^b	
Enterococcus spp. resistente a glucopéptidos	++++	++++	(+)	-	++	
Enterobacterias productoras de BLEE	++++	++++	+	-	++	
Acinetobacter baumannii multirresistente	++++	++	++++ ^c	-	+++ ^{d, e}	
Pseudomonas aeruginosa resistente a carbapenemas por producción de MBL	+	+++	++++	-	+++4	

In our study the best performance was obtained by skin samples (100%), followed by the rectal samples (86%).

A multimodal intervention program to control a long-term Acinetobacter baumannii endemic in a tertiary care hospital. Antimicrob Resist Infect Control. 2019;8:199.

Enhanced Environmental Sampling

by pre-moistened thioglycolate or Brain Heart Infusion Broth (BHI) sterile gauze pads

Positive Environmental Cultures for Multidrug-Resistant *Acinetobacter Baumannii* Comparing Moistened Swabs Versus Moistened Gauze Pads

By using BHI pre-moistened sterile gauze pads, more than 50% of our environmental samples were positive for CRAB.

BHI moistened sterile gauze technique was a more sensitive method for CRAB detection (40% positives vs 0%; P<0.05).

Courtesy of Dr. José María López Lozano Chief. Preventive Medicine/ Infection Control Unit Hospital Vega Baja Orihuela-Alicante

Environmental sampling of Acinetobacter baumannii: moistened swabs versus moistened sterile gauze pads

X Corbella, M Pujol, M J Argerich, J Ayats, M Sendra, C Peña, J Ariza

	Tot	al
	S	G
Colonized or infected	16/4	46
patients/total patients*		
Items in a cleaned room		
Monitor	1/5	1/5
BPG	0/4	1/4
Lamp	0/6	0/6
Mattress	0/5	1/5
Window blind	0/5	0/5
Total	1/25	3/25
Items in use in the unit		
Table	2/5	4/5
Cupboard	0/8	2/8
ECG	0/3	1/3
Cart	2/4	4/4
Crane	0/3	2/3
Telephone	0/1	1/1
BCM	0/1	1/1
Total	4/25	15/25
Iutai	5/50	18/50

Infection Control and Hospital Epidemiology, Vol. 20, No. 7 (July 1999), pp. 458-460

Reinforced 'search and destroy' strategies both on the environment and on the patient..

<u>High level</u>
<u>disinfection</u>
<u>Using hypochlorite</u>
<u>10%</u>

 Do not perform simultaneous disinfection in several areas of the ICU

Radical Disinfection with fluorescent markers

How to evaluate the effectiveness ?

By using fluorescein spray on the cleaned surfaces and checking with an UV torch. The evidence of fluorescent spots indicates the surface has not been cleaned

HHS Public Access

Author manuscript Infect Control Hosp Epidemiol. Author manuscript; available in PMC 2019 August 12.

Published in final edited form as: Infect Control Hosp Epidemiol. 2017 November ; 38(11): 1371–1373. doi:10.1017/ice.2017.205.

Self-monitoring by Environmental Services May Not Accurately Measure Thoroughness of Hospital Room Cleaning

FLUORESCENT MARKERS placed on surfaces: ~30%difference between EVS supervisors & validation

Kooms and Surfaces Tested	EVS, II/N (%)	validation, n/N (%)	P value
Total surfaces cleaned	264/320 (82.5)	153/292 (52.4)	<.001
Top 6 surfaces monitored			
Bathroom handrail by toilet	17/23 (73.9)	6/14 (42.9)	.062
Room/Bathroom door knob	19/21 (90.5)	3/13 (23.1)	<.001
Room/Bathroom light switch	20/21 (95.2)	5/21 (23.8)	<.001
Toilet seat	21/23 (91.3)	10/15 (66.7)	.059
Room sink	21/26 (80.8)	25/32 (78.1)	.806
Chair arm/seat	40/51 (78.4)	12/21 (57.1)	.069

Review

Is It Possible to Eradicate Carbapenem-Resistant *Acinetobacter baumannii* (CRAB) from Endemic Hospitals?

Filippo Medioli¹, Erica Bacca¹, Matteo Faltoni¹, Giulia Jole Burastero¹, Sara Volpi¹, Marianna Menozzi¹, Gabriell<u>a Orlando¹</u>, Andrea Bedini¹, Erica Franceschini¹, Cristina Mussini² and Marianna Meschiari^{1,*}

Study						/								
	HH Compliance /A HR Consumpior	Active Rectal Screening (Targeted/ Universal)	Additional Active Screening Strategies	Contact Isolation /Alert Code	Daily Chlorexidine Baths	Cohorting Staff /Patients	Closure /Stop Admissions	Environmental Disinfection	Environmental Cultures	Monitoring of Environmental Cleaning	Genotyping	Antimicrobial Stewardship/ Monitoring of Antibiotic consumption	Traning/ Education	Outcome
Perez et al., 2020 [19]														
Cho et al., 2014 [26]														
Munoz-Price et al., 2014 [27]														
Valencia- Martin et al., 2019 [28]														
Enfield et al., 2014 [29]														
Karampatakis et al., 2018 [30]														
Eckardt et al., 2022 [31]														
Chung et al., 2015 [32]														
Meschiari et al., 2020 [33]														
Zhao et al., 2019 [34]														
Ben-chetrit et al., 2019 [35]														
Metan et al., 2019 [36]														
All Studies														

Antibiotics 2022, 11, 1015. https://doi.org/10.3390/antibiotics11081015

CRAB Horizontal Decolonisation strategies

J Hosp Infect. 2019 Nov;103(3):284-292. doi: 10.1016/j.jhin.2019.08.004. Epub 2019 Aug 9.

Effect of chlorhexidine bathing on colonization or infection with Acinetobacter baumannii: a systematic review and meta-analysis.

<u>Fan CY¹, Lee WT², Hsu TC³, Lee CH¹, Wang SP⁴, Chen WS⁵, Huang CH³, Lee CC⁶.</u>

Horizontal

- Chlorhexidine bathing
- Digestive and oropharyngeal decontamination
- Mechanical bowel preparation and oral antibiotics

Vertical

- S. aureus
- VRE
- Multidrug-resistant grambacteria

Dale et al. Trials (2019) 20:603 https://doi.org/10.1186/s13063-019-3673-0

Trials

STUDY PROTOCOL

Protocol for a multi-centered, stepped wedge, cluster randomized controlled trial of the de-adoption of oral chlorhexidine prophylaxis and implementation of an oral care bundle for mechanically ventilated critically ill patients: the CHORAL study

Craig M. Dale^{1,2,3}, Louise Rose^{4,5,1,3}, Sarah Carbone¹, Orla M. Smith^{6,7,1}, Lisa Burry^{8,9,10}, Eddy Fan^{10,11}, Andre Carlos Kajdacsy-Balla Amaral^{4,10,3}, Victoria A. McCredie^{10,11}, Ruxandra Pinto⁴, Carlos R. Quiñonez¹², Susan Sutherland¹³, Damon C. Scales^{4,10,3} and Brian H. Cuthbertson^{4,10,3*}

Open Access

Check for updates Among mechanically ventilated ICU patients, no benefit was observed for de-adoption of chlorhexidine and implementation of an oral care bundle on ICU mortality, IVACs, oral procedural pain, or time to extubation.

Decolonisation strategies outside ICU

Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial

Susan S Huang, Edward Septimus, Ken Kleinman, Julia Moody, Jason Hickok, Lauren Heim, Adrijana Gombosev, Taliser R Avery, Katherine Haffenreffer, Lauren Shimelman, Mary K Hayden, Robert A Weinstein, Caren Spencer-Smith, Rebecca E Kaganov, Michael V Murphy, Tyler Forehand, Julie Lankiewicz, Micaela H Coady, Lena Portillo, Jalpa Sarup-Patel, John A Jernigan, Jonathan B Perlin, Richard Platt, for the ABATE Infection trial team

Summary

Background Universal skin and nasal decolonisation reduces multidrug-resistant pathogens and bloodstream infections in intensive care units. The effect of universal decolonisation on pathogens and infections in non-critical-care units, with an intervention similar to one that was found to reduce multidrug-resistant organisms http://dx.doi.org/10.1016/ S0140.6726(18)22502.5

Lancet 2019; 393: 1205-15

- Insufficient data to support routine use of patient bathing with chlorhexidine in general medical and surgical units
- Potential benefit for patients with medical devices

Vancomycin Resistant E Strategies Enterococci (VRE) control

Quality imn

Multidimension

nterventions

VRE: risk factors for colonization

Highrisk patients

neutropenic patients

(HR 4,9 (95%CI 1,2-20,4); DiazGranados et al., JID 2005)

hemato-oncological patients

(OR 15,0 (95%Cl 1,6-138,9); Worth et al., Eur Jr Hematology 2007)

liver-Tx patients

(Inf. OR 3,6 (95%Cl 2.01–6.47); Death OR 2,1 (95%Cl 1.27–3.54); Russell et al., *Am Jr Tr* 2008) (OR 13,8 (95%Cl 3.2–59.9; P < 0,001); McNeil et al.; *CID* 2006)

hemodialysis patients

(OR 3,9 (95%CI 1.1-13.8); p<0,03); Askarian et al. Int Jr Infectious Diseases 2008)

(OR 1,8 (95%CI 1.4-2.3; P < 0,01); Tacconelli et al. CID 2004)

Meschiari et al. Antimicrobial Resistance & Infection Control (2023) 12:126 https://doi.org/10.1186/s13756-023-01332-x Antimicrobial Resistance & Infection Control

VRE: risk factors for colonization in high risk patients

RESEARCH

Open Access

Check for updates

Vancomycin resistant enterococcus risk factors for hospital colonization in hematological patients: a matched case-control study

Table 4: Outcomes of patients colonized with VRE compared with those of controls.

	Total (n=166)	Cases. n=83 (50%)	Controls. n=83 (50%)	p-value
VRE infection	11 (6.6)	11 (13.3)	0 (0.0)	0.001
BSI	8 (4.8)	8 (9.6)	0 (0.0)	
UTI	2 (1.2)	2 (2.4)	0 (0.0)	
IAI	1 (0.6)	1 (1.2)	0 (0.0)	
No VRE infection	155 (93.4)	72 (86.7)	83 (100.0)	
Time from VRE colonization				
to VRE infection				
days, mean \pm SD (range)		30.2, 26.8(0-72)		
CDI	8 (4.8)	7 (8.4)	1 (1.2)	0.030
30-day mortality, <i>n/N (%)</i>				
Overall *	10/166 (6.0)	4 (4.8)	6 (7.2)	0.514
VRE infection	0/11 (0.0)	0/11 (0.0)	0/0 (0.0)	-
No VRE infection	10/155 (6.4)	4/72 (5.6)	6/83 (7.2)	0.672
90-day mortality, n/N (%)	20 /166 (12.0)	8 (9.6)	12 (14.5)	0.340

VRE: vancomycin resistant Enterococcus, BSI: bloodstream infection, UTI: urinary tract infection, IAI: intra-abdominal infection, CDI: <u>Clostridioides</u> difficile infection.

*comparison between 30 day mortality of cases with or without VRE infection, p_0.448

Conclusions

- Antimicrobial stewardship strategies to reduce inappropriate Gram-positive coverage in hematological patients is urgently required, as independent risk factors for VRE nosocomial colonization identified in this study include any use of vancomycin and altered bowel habits.
- VRE colonization and infection did not influence 30- and 90-day mortality.
- There was a strong correlation between CDI and VRE, which deserves further investigation to target new therapeutic approaches.

Meschiari M, Antimicrob Resist Infect Control. 2023 Nov 13;12(1):126

Marianna Meschiari^{1*}, Shaniko Kaleci², Martina Del Monte¹, Andrea Dessilani¹, Antonella Santoro¹, Francesco Scialpi¹, Erica Franceschini¹, Gabriella Orlando¹, Adriana Cervo¹, Morselli Monica⁶, Fabio Forghieri⁶, Claudia Venturelli³, Enrico Ricchizzi⁴, Johanna Chester⁵, Mario Sarti³, Giovanni Guaraldi¹, Mario Luppi⁶ and Cristina Mussini¹

Table 5: Multivariate analysis of risk factors for VRE nosocomial rectal colonization in hematological patients.

	OR	95% CI	p-value
Any use of vancomycin	3.5	(1.15 – 10.87)	0.027
Use of third generation cephalosporins	7.7	(0.87 – 67.99)	0.067
Bone marrow transplant	2.3	(0.65 – 8.08)	0.200
Altered bowel habits	3.1	(1.07 – 8.94)	0.036
Hospitalization in the previous 6 months	2.3	(0.93 – 5.43)	0.170

OR: odds ratio, CI: confidence interval.

Elimination of Routine Contact Precautions for VRE

Martin EM, Russell D, Rubin Z, Humphries R, Grogan TR, Elashoff D, Uslan DZ.

Elimination of Routine Contact Precautions for Endemic Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus: A Retrospective Quasi-Experimental Study.

Infect Control Hosp Epidemiol. **2016** Nov;37(11):1323-1330. doi: 10.1017/ice.2016.156. Epub 2016 Jul 26. PMID: 27457254; PMCID: PMC6783805.

1b. VRE LabID Clinical Culture Rates at UCLA Health Before and After Discontinuing CP

Given the increase in CHG bathing shortly before discontinuing CP, it is not possible to separate the impact of these two interventions.

IPC strategies are dynamic: change MDR policies overtime

SHEA

Infection Control & Hospital Epidemiology (2021), 1-8 doi:10.1017/ice.2021.457

Original Article

Discontinuing MRSA and VRE contact precautions: Defining hospital characteristics and infection prevention practices predicting safe de-escalation

Elise M. Martin MD, MS^{1,2} (), Bonnie Colaianne MSN, RN, CNL, CIC, FAPIC³, Christine Bridge MHMS, MBA³, Andrew Bilderback MS³, Colleen Tanner MSN, RN⁴, Suzanne Wagester MSN, RN³, Mohamed Yassin MD^{2,5}, Raymond Pontzer MD⁶ and Graham M. Snyder MD, SM^{1,2}

Clinical Infectious Diseases

Clinical Infectious Diseases® 2021;72(S1):S42–9

Effectiveness of Contact Precautions to Prevent Transmission of Methicillin-Resistant *Staphylococcus aureus* and Vancomycin-Resistant Enterococci in Intensive Care Units

Karim Khader,^{1,2,©} Alun Thomas,² W. Charles Huskins,³ Vanessa Stevens,^{1,2} Lindsay T. Keegan,^{1,2} Lindsay Visnovsky,^{1,2} and Matthew H. Samore^{1,2}; for the Centers for Disease Control and Prevention (CDC) Prevention Epicenter Program and for the CDC Modeling Infectious Diseases in Healthcare Program

To define **conditions in which contact precautions can be safely discontinued** for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE).

DESIGN:

Interrupted time series in 15 acute-care hospitals. Inpatients.

INTERVENTION:

Contact precautions: discontinued in 12 intervention hospitals/continued at 3 non-intervention hospitals.

Discontinuing contact precautions for VRE did not result in increased HAI rates, suggesting that contact precautions can be safely removed from diverse hospitals, including community hospitals and those with lower proportions of private rooms. Good hand hygiene and low baseline HAI rates may be conditions permissive of safe removal of contact precautions.

To predict conditions when contact precautions may be safely discontinued, selected baseline hospital characteristics and infection prevention practices were correlated with HAI rate changes, stratified by hospital.

Bundles application: <u>Hospital-level-adapted procedures</u>

provide the second s	1	
	PREVENZIONE E CONTROLLO DELLA	IO 59
EMILIA-ROMAGNA	DIFFUSIONE DI ACINETOBACTER	Rev. 0 / 2022
Azienda Ospedanero - Universitaria di Induena	BAUMANNII MULTIRESISTENTE	Pag. 1/10
		K
	SOMMARIO	
1. MODIFICHE		2
2. PREMESSA		
3. SCOPO		3
4. CAMPO DI APPLICAZIONE		3
5. RESPONSABILITÀ		3
6. DOCUMENTI DI RIFERIMENTO)	3
7. SIGLE E DEFINIZIONI		4
8. CONTENUTO		4
8.1 GESTIONE DELLE INFORM	/AZIONI	4
8.2 GESTIONE DI PAZIENTE P	OSITIVO PER MDR-AB	4
8.3 GESTIONE DEI CONTATTI		6

	RACCOMANDAZIONI PER LA	IO 24
EMILIA-ROMAGNA	PREVENZIONE E IL CONTROLLO	Rev. 0 / 2022
	DELL'INFEZIONE DA CANDIDA AURIS	Pag. 1/8

SOMMARIO

1.	MODIFICHE	2
2.	PREMESSA	3
3.	SCOPO	3
4.	CAMPO DI APPLICAZIONE	3
5.	RESPONSABILITÀ	3
6.	DOCUMENTI DI RIFERIMENTO	4
7.	SIGLE E DEFINIZIONI	4
8.	CONTENUTO	4
9.	ALLEGATI	8
		5 (B)

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero-Universitaria di Modena	GESTIONE DEI PAZIENTI (adulti e bambini, neonati esclusi) CON ISOLAMENTO DI MRSA IN CAMPIONI CLINICI: MISURE DI ISOLAMENTO, DECOLONIZZAZIONE E SOSPENSIONE DELLE MISURE DI ISOLAMENTO	IO 47 Rev. 0 / 2023 Pag 1/7					
	SOMMARIO						
1. MODIFICHE		2					
2. OGGETTO E SCOPO							
2.1 Scopo							
3. CAMPO DI APPLICAZIONE							
4. RESPONSABILITÀ							
5. RIFERIMENTI NORMATIVI /	BIBLIOGRAFIA						
6.1 PREMESSA							
6.2 EPIDEMIOLOGIA E FAT	TORI DI RISCHIO	4					
6.3 SCREENING PER MRSA							
6.4 DECOLONIZZAZIONE/BONIFICA NASALE E CUTANEA							
6.5 VERIFICA DELL'AVVENUTA DECOLONIZZAZIONE E SOSPENSIONE ISOLAMENTO DA							
6.6 ISOLAMENTO							
6.7 SORVEGLIANZA DEL PERSONALE							

Oggetto: Programma per la sorveglianza ed il controllo degli enterococchi resistenti a vancomicina (VRE)

Nuove indicazioni per strategie di prevenzione VRE: aggiornamento attività di screening rettale e sospensione attività di isolamento con decorrenza a partire dal 1 febbraio 2023 anno 2023 AOU di Modena (Stabilimenti Policlinico e Ospedale Civile Baggiovara)Nell'ambito delle misure di prevenzione e controllo del rischio infettivo, con particolare riferimento ai germi multiresistenti, in AOU di Modena è attivo un programma di screening volto a identificare pazienti portatori di Enterococchi resistenti alla a vancomicina (VRE) per messa in atto di strategie mirate di prevenzione per prevenire ulteriore trasmissione nosocomiale. Lo screening attivo nell'ambito di un programma poiè ampio di prevenzione delle infezioni ha lo scopo di ridurre i tassi di colonizzazione e conseguentemente le infezioni da VRE.

Lo screening universale all'ingresso e settimanale rimarrà nei seguenti reparti:

SHIP

PARTNER.)

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

APIC/SHEA/SIDP Antimicrobial Stewardship Position Paper

Antimicrobial stewardship and infection prevention—leveraging the synergy: A position paper update

Antimicrobial Stewardship and Infection Prevention-Leveraging the Synergy: A Position Paper Update Infect Control Hosp Epidemiol . 2018 Apr;39(4):467-472. doi: 10.1017/ice.2018.33.

- The vital work of IPC and AS programs cannot be performed independently.
- IPC and AS requires interdependent and coordinated action across multiple and overlapping disciplines and clinical settings.
- Deliberate strategic relationship-building actions will be required of IPC and AS program leaders to bring groups together to achieve the larger purpose of keeping patients safe from infection and ensuring that effective antibiotic therapy is available for **future generations**.

K. pneumoniae da sangue: % CR anno 2022

P. aeruginosa da sangue: % CR 1° quad. 2023

P. aeruginosa da sangue: % CR anno 2022

Conclusions

- We need mechanisms for development of evidence based recommendations tailored on local epidemiology not only for AS but also <u>for diagnostics and infection control practices</u>
- The community burden of CRE and other MDR-GNB has been little assessed in the literature, (just focusing on long-term care facilities) and new measures are needed to address plasmid-mediated transmission in and outside hospital setting
- WE need for Effective communication strategies (tailored to specific target audiences)
- IPC professionals need to apply behaviour change to be effective in their role
- IPC Implementation must be integrated with tailored on patient care practices (champions task)

Progetto **INSIEME**

Italian <u>National project for contrast antibiotic</u> resistance a cooperation between Simit E (&) <u>M</u>inistry of h<u>E</u>alth l'obiettivo di finalizzare e rendere operative le strategie di contrasto alle infezioni correlate all'assistenza

- Azienda Ospedaliera di Padova,
- Ospedale S. Paolo, Milano,
- Azienda Ospedaliera Universitaria di Pisa
- Ospedale Policlinico Tor Vergata, Roma
- Ospedale S.M.Goretti, Latina,
- Presidio Ospedaliero Pescara
- Azienda Ospedaliera Universitaria Luigi Vanvitelli, Napoli

- Policlinico "Gaetano Martino" di Messina
- Ospedale ARNAS CIVICO di Palermo
- Azienda Ospedaliera Universitaria Policlinico Riuniti di Foggia
- Ospedale Amedeo di Savoia di Torino
- Azienda Socio-Sanitaria

Territoriale di Cremona

Questionario per valutare l'attività per il contrasto dell'antibiotico-resistenza negli ospedali per acuti

Realizzato dai membri del Progetto INSIEME (Italian National project for contrast antibiotic resistance a cooperation between SImit E & Ministry of hEalth)

mariannameschiari1209@gmail.com Cambia account Non condiviso

0

* Indica una domanda obbligatoria

Azienda Ospedaliera Specialistica dei Colli, (Cotugno, CTO, Momaldi), Napoli, Azienda Ospedaliera Universitaria Policlinico di Catania

Acknowledgements:

Infectious Diseases

Cristina Mussini Andrea Bedini Gabriella Orlando Cinzia Puzzolante Marianna Menozzi Erica Franceschini Adriana Cervo

Pharmacy

Antonella Santoro

Laura Cancian Emilia Esposito

Infection Control

Sara Scannavini

Giliola Bianchini Patrizia Albinelli Monica Barbieri Patrizia Scanavini Cinzia Brazioli Orsolina Manzi

Microbiology

Mario Sarti Venturelli Claudia "INSANITY: DOING THE SAME THINGS OVER AND OVER AGAIN AND EXPECTING DIFFERENT RESULTS."

...and all the colleagues in the different wards!!!