Infezioni e terapia da *Pseudomonas* MDR

Antonio Vena, MD, PhD

Department of Health Sciences, Infectious Disease Clinic, University of Genoa, Italy.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

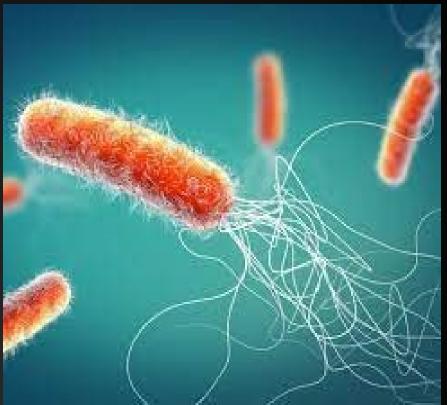
Disclosures (past 5 years)

Advisor/consultant/speaker bureau

- Angelini, Gilead, Menarini, MSD, Pfizer, Shionogi

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

1- Concepts of Pseudomonas aeruginosa



Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Pseudomonas aeruginosa

- Gram-negative non-fermentative bacillus
- Common in the environment, (water, even contaminating distilled water)
- it is also an important cause of infections associated with hot tubs and contaminated contact lens solutions

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Pseudomonas aeruginosa General concept

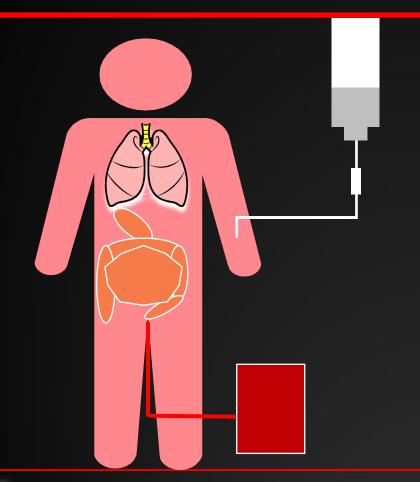
One of the most frequent causes of severe nosocomial infections (especially ICU and immunocompromised patients)

First cause of VAP and burn wound infections: *P.aeruginosa* is associated with very high mortality rates

Most frequent driver of chronic respiratory infections in CF. **Extraordinary capacity for developing resistance**

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Sepsis in European intensive care units: Results of the SOAP study


Vincent JL Critical care Medicine 2006

- 3.147 adult patiens (64 yrs) from 198 ICU
- 1,177 (37.4%) had sepsis (lung>>> abdomen).
- Common organisms:
 - ➤ S. aureus 30%
 - Pseudomonas species 14%
 - *≻ E. coli* 13%

	OR (95% CI)	p Value
SAPS II score ^a (per point increase)	1.0(1.0-1.1)	<.001
Cumulative fluid balance ^b (per liter increase)	1.1 (1.0 - 1.1)	.001
Age (per year increase)	1.0(1.0-1.0)	.001
Initial SOFA score (per point increase)	1.1(1.0-1.1)	.002
Blood stream infection	1.7(1.2-2.4)	.004
Cirrhosis	2.4(1.3-4.5)	.008
Pseudomonas infection	1.6(1.1-2.4)	.017
Medical admission	1.4(1.0-1.8)	.049
Female gender	1.4(1.0-1.8)	.044

Pseudomonas aeruginosa infections

VAP

- BSI

Wound/Burn infections

UTIS Related to bladder catheter

Peritonitis (tertiary>>> secondary)

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

2- Antibiotic resistant *P.aeruginosa* in our enviroment

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Molecular Epidemiology of *P aeruginosa aeruginosa*

Mechanism

AmpC β-lactamase

Extended-spectrum β-lactamase

Metallo-β-lactamases

MexAB-OprM upregulation (efflux pump)

OprD downregulation (porin mutation)

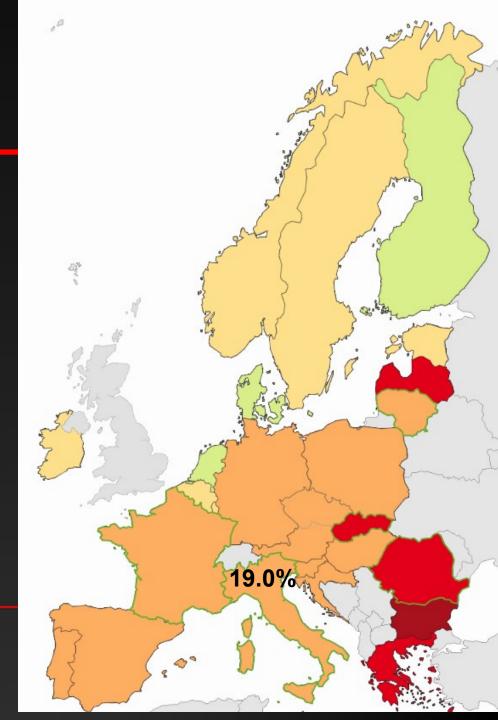
Mutations

Characteristics

- Most common β-lactamase produced in *P. aeruginosa*
- Resistance to penicillins, cephalosporins (not cefepime)
- OXA: resistance to penicillins, cephalosporins, aztreonam
- VIM, IMP, NDM: resistance to penicillins, cephalosporins, carbapenems
- Does NOT hydrolyze aztreonam
- Reduced susceptibility to meropenem (NOT imipenem); reduced susceptibility or resistance to penicillins; resistance to fluoroquinolones, cephalosporins
- Major contributor to carbapenem resistance (eg, imipenem, reduced susceptibility to meropenem)
- Topoisomerase II/IV: fluoroquinolone resistance

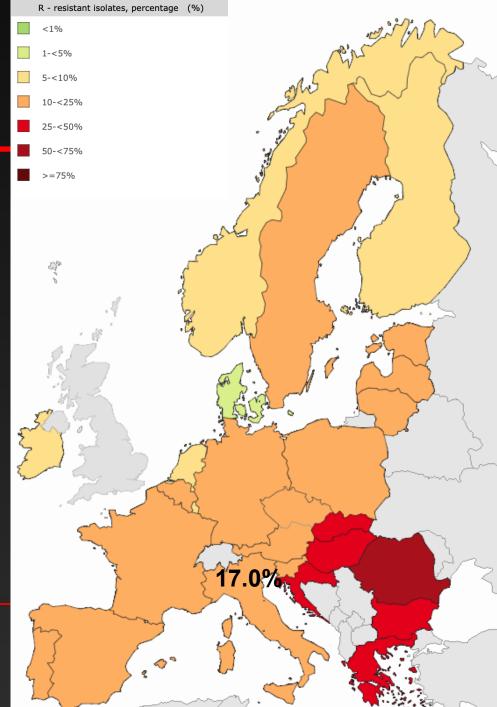
Any of the above can co-occur with other resistance mechanisms

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy


Livermore. Clin Infect Dis. 2002; Xu. Infect Drug Resist. 2020

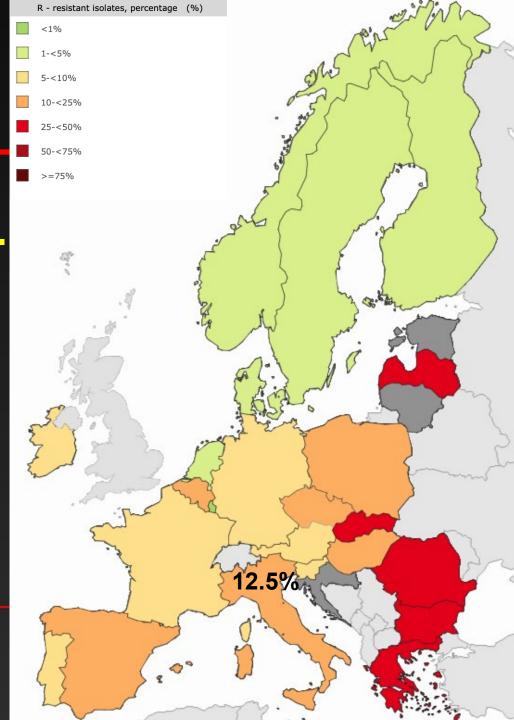
Pseudomonas in E.U. R to 3° cefalo

Mean European countries 21%

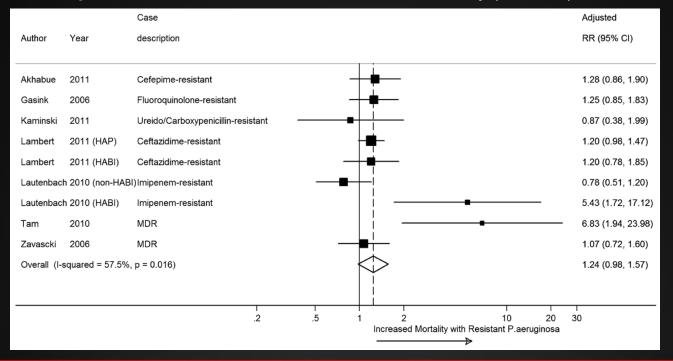


Pseudomonas in E.U. R to carbapenems

Mean European countries 19%



Pseudomonas in E.U. R to MDR (R to FQs + Aglx + carba)


Mean European countries 15%

MDR *P. aeruginosa* is associated with an increased mortality

- Systematic review:
- All-cause mortality was 34% for any resistant and 22% for susceptible *P. aeruginosa*
- MDR P. aeruginosa had a >two-fold increased risk of mortality (RR 2.34)

Nathwani D, et al. Antimicrob Resist Infect Control 2014:3:32.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

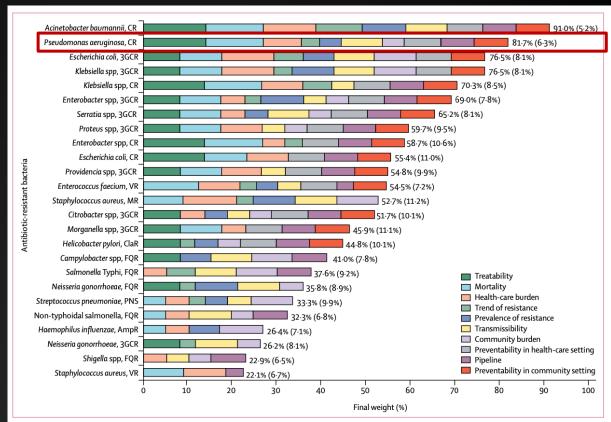
WHO list of priority multidrug resistant bacteria

Panel: WHO priority list for research and development of new antibiotics for antibiotic-resistant bacteria

Multidrug-resistant and extensively-resistant Mycobacterium tuberculosis²⁵

Other priority bacteria

Priority 1: critical


- Acinetobacter baumannii, carbapenem resistant
- Pseudomonas aeruginosa, carbapenem resistant
- Enterobacteriaceae, carbapenem resistant, thirdgeneration cephalosporin resistant

Priority 2: high

- Enterococcus faecium, vancomycin resistant
- Staphylococcus aureus, methicillin resistant, vancomycin resistant
- Helicobacter pylori, clarithromycin resistant
- Campylobacter spp, fluoroquinolone resistant
- Salmonella spp fluoroquinolone resistant
- Neisseria gonorrhoeae, third-generation cephalosporin resistant, fluoroquinolone resistant

Priority 3: medium

- Streptococcus pneumoniae, penicillin non-susceptible
- Haemophilus influenzae, ampicillin resistant
- Shigella spp, fluoroquinolone resistant

Figure 2: Final ranking of antibiotic-resistant bacteria

Taconelli et al. Lancet Infect Dis 2018; 18:318-327

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

3- Old antibiotics

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Treatment with COLISTIN MDR *P. aeruginosa* infections

Nosocomial infections	Favorable clinical	Crude mortality,	Microbiologica	al outcome, n (%)
Total n = 121	response, n (%)	(%) n (%) Eradication Non-eradication		Non-eradication
Bacteremia (n = 16)	10 (62.5)	6 (37.5)	7 (43.8)	6 (37.5)
Pneumonia (n = 20)	13 (65)	7 (35)	6 (30)	7 (35)
Bronchial infection (n = 59)	43 (72.9)	6 (10.2)	9 (15.3)	36 (61)
Urinary (n = 13)	11 (84.6)	1 (7.7)	3 (23.1)	6 (46.2)
Skin and soft tissues $(n = 11)$	8 (72.7)	0	5 (45.5)	3 (27.3)
Otitis (n = 1)	1 (100)	0	1 (100)	0
Arthritis (n = 1)	1 (100)	0	0	0

Montero M, et al Infection 2009 Oct;37(5):461-5.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

	Colist	in	Compar	ator		Odds ratio	Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Fixed, 95% Cl	Fixed, 95% Cl
1.2.1 Pseudorandomized							
Betrosian 2008 ^[131]	5	15	4	13	2.5%	1.13 [0.23, 5.54]	
Subtotal (95% CI)		15		13	2.5%	1.13 [0.23, 5.54]	
Total events	5		4				
Heterogeneity: Not applicab							
Test for overall effect: $Z = 0$		0.88)					
1.2.2 Matched retrospectiv	e desig	n					
Durakovic 2011 ^[133]	3	26	3	26	2.3%	1.00 [0.18, 5.48]	
Kallel 2007 ^[126]	21	60		60		1.62 [0.73, 3.56]	
Subtotal (95% CI)		86	10	86		1.48 [0.73, 3.03]	
Total events	24		18			• • •	
Heterogeneity: Chi ² = 0.25,		0 = 0.62		,			
Test for overall effect: $Z = 1$			-,,,.				
1.2.3 Non-matched prospe	ctive						
Garnacho-Montero 2003 [12	^{4]} 13	21	9	14	3.6%	0.90 [0.22, 3.68]	
Hachem 2007 ^[127]	19		30	64	6.6%	1.79 [0.75, 4.30]	
Reina 2005 ^[125]	16		34	130		0.90 [0.46, 1.79]	
Paul 2011 [122]	78	200	85	295		1.58 [1.08, 2.31]	
Subtotal (95% CI)		318		503		1.40 [1.03,1.89]	•
Total events	126		158				
Heterogeneity: Chi ² = 2.64,	df = 3 (p) = 0.45	5); /² = 0%)			
Test for overall effect: $Z = 2$.18 (p =	0.03)					
1.2.4 Non-matched retrosp	ective						
Gounden 2009 ^[132]	16	32	9	32	3.9%	2.56 [0.91, 7.20]	· · · · ·
Kvirko 2011 (polyB) [135]	30	45	25	88	4.9%	5.04 [2.32, 10.93]	
Rios 2007 ^[128]	16	31	14	40	5.2%	1.98 [0.76, 5.16]	
Oliveria 2008 (polyB) ^[130]	63	82		85	10.7%	1.90 [0.97, 3.75]	
Subtotal (95% CI)		190		245	24.7%	2.65 [1.76, 3.99]	
Total events	125		102				
Heterogeneity: Chi ² = 3.93,	df = 3 (p	0 = 0.27	7); <i>I</i> ² = 249	%			
Test for overall effect: $Z = 4$							
Total (95% CI)		609		847	100.0%	1.71 [1.36, 2.14]	•
Total events	280		282				
Heterogeneity: Chi ² = 13.23	, df = 10) (p = 0	.21); <i>I</i> ² = 2	24%		+	0.2 0.5 1 2 5
Test for overall effect: $Z = 4$.66 (p =	0.0000)1)				Favours colistin Favours compara
Test for subgroup difference			,	= 0.09):	l ² = 54.0%	6	r avours consumer avours company


Treatment with COLISTIN for MDR *P. aeruginosa* infections

Yahav et al. Clin Microbiol Infect 2012: 18: 18-29

Impact of colistin plasma levels on the clinical outcome of patients with infections caused by extremely drug-resistant *Pseudomonas aeruginosa*

Nephrotoxicity

From 40% to 70% of patients

Dosage required to treat systemic infections approach the <u>threshold for nephrotoxicity</u> making the therapheutic window very narrow

Kengkla K, J Antimicrob Chemother. 2018;73:22-32 Sorli L, et al. BMC Infect Dis 2013; 13:380

Università degli Studi di Genova Sorli L Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Role of aminoglycoside

- Multicenter restrospective cohort study of prospectively collected data from 2010-2017, 6 university hospitals in Spain (4), Argentina (1) and Turkey (1).
- 542 GNB-BSI: 304 (56%) combination; 52% of them cefepime plus amikacin
- 146 episodes-MDR: ESBL + 45.2%; CRE 8.2%
- Median days of aminoglycosides 2 (IQR 1-3)

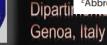
	No. (%) in study popu	No. (%) in study population				
Treatment	Total (<i>n</i> = 542)	Combination therapy (<i>n</i> = 304)	Monotherapy (n = 238)	Pa		
7-day case fatality rate	49 (9)	18 (5.92)	31 (13)	0.007		
30-day case fatality rate	115 (21.2)	48 (15.8)	67 (28.1)	0.001		
Persistent BSI ^b	24 (4.4)	7 (2.4)	17 (7.20)	0.014		
Incidence of nephrotoxicity at end of antibiotic treatment	40 (7.4)	18 (5.9)	22 (9.2)	0.2		

TABLE 4 Case fatality and nephrotoxicity rates at different assessment points

^aQualitative data were tested by the chi-square test.

^bBSI: bloodstream infection. Percentages are calculated based on the available data regarding persistent BSI (total study population, *n* = 533; monotherapy population, *n* = 236; combination therapy population, *n* = 297).

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy Albasanz-Puig et al. AAC 2021



Is combination with AG a solution?

TABLE 1 Clinical and demographic characteristics of	TABLE 1 Clinical and demographic characteristics of patients with BSI episodes presenting with and without septic shock ^c						
Characteristic	All episodes (<i>n</i> = 1,563)	No septic shock ($n = 1,306$)	Septic shock (n = 257)	P value			
Demographic data							
Age, median (IQR), yr	59 (48–67)	61 (51–69)	59 (47–66)	0.616			
Male sex	918 (59)	768 (59)	150 (58)	0.896			
Underlying disease							
Hematological malignancy	1,348 (86)	1,168 (89)	180 (70)	< 0.00			
Solid neoplasm ^a	238 (15)	157 (12)	81 (32)	<0.001			
Hematopoietic stem cell transplant	400 (26)	355 (27)	45 (18)	0.001			
Allogenic/autologous	249/151 (62/38) ^b	215/140 (61/39) ^b	34/11 (76/24) ^b	0.051			
Any comorbidity	456 (29)	366 (28)	90 (35)	0.024			
Corticosteroid therapy	588 (38)	461 (35)	127 (49)	< 0.00			
Nosocomial BSI (vs health care or community acquired)	999 (64)	883 (68)	116 (45)	< 0.00			
Source of BSI							
Endogenous/unknown	763 (49)	650 (50)	113 (44)	0.089			
Catheter related	333 (21)	309 (24)	24 (9)	< 0.00			
Abdominal	102 (7)	72 (6)	30 (12)	< 0.00			
Pulmonary	97 (6)	49 (4)	48 (19)	< 0.00			
Urinary	83 (5)	62 (5)	21 (8)	0.025			
Inappropriate empirical antik or herapy	471 (30)	426 (32.6)	45 (17.5)	< 0.00			
For Gram-positive cocci	290 (18.6)	277 (21.2)	13 (5.1)	<0.00			
For Gram-negative bacilli	146 (9.3)	121 (9.3)	25 (9.7)	0.816			
Outcome							
Mechanical ventilation requirement	100 (6.6)	29 (2.3)	71 (27.6)	< 0.001			
30-day mortality	342 (21.9)	201 (15.4)	141 (54.9)	< 0.001			

Univers ^bPercentage among hematopoietic stem cell transplant recipients.

^cAbbreviations: IQR, interquartile range; BSI, bloodstream infection. All values except age are shown as no. (%).

Is combination with AG a solution?

The combination works well when both drugs are active *in vitro*

TABLE 3 Mortality according to active empirical antibiotic coverage administered in Gramnegative bloodstream infection with septic shock^a

Active antibiotic(s)	Survival, n (%)	Death, <i>n</i> (%)
Only 1 β -lactam was active ($n = 64$)	22 (34)	42 (66)
Only amikacin was active ($n = 10$)	1 (10)	9 (90)
Combined β -lactam and amikacin were both active ($n = 101$)	62 (61)	39 (39)
Combined β -lactam, quinolone, and amikacin were all active ($n = 4$)	2 (50)	2 (50)
Combined β -lactam and quinolone were both active ($n = 6$)	4 (67)	2 (33)
No active empirical antibiotic was administered ($n = 22$)	3 (14)	19 (86)

^{*a*}*P* value for all data is < 0.001.

Chumbita et al. AAC 2021

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

We probably <u>cannot count on aminoglycoside</u> getting us through the first one or two days of the infection if this is the only antibiotic that is active...

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Old versus new antibiotics against MDR *Pseudomonas aeruginosa*

OLD

- Colistin
- Aminoglycoside

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

NEW

- Ceftolozano-tazobactam
- Ceftazidime avibactam
- Imipenem-relebactam

Cefiderocol

Ospedale Policlinico San Martino IRCCS Genoa, Italy

4- Ceftolozano-tazobactam

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Ceftolozane-tazobactam

- High affinity for PBPs:
 - ➢ P. aeruginosa: PBP1b, PBP1c, PBP3.
 - *▶ E. coli*: PBP3
- Higher stability against AmpC-type β-lactamases
- Increased permeability of the g(-) outer membrane:
 > Overcomes the effect of efflux pumps and porin mutations.
- Greater activity against *P. aeruginosa* than other anti-PA drugs
- Tazobactam inhibits several β-lactamases including ESBL

Sucher AJ, et al. Ann Pharmacother. 2015:49(9):1046-56 Cho JC, Pharmacotherapy. 2015; 35(7):701-15.

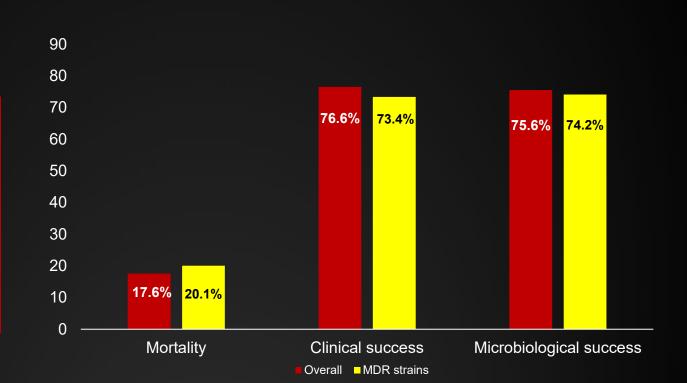
RCT: Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP)

	Ceftolozane–tazobactam group	Meropenem group	% difference (95% CI)*
Gram-negative pathogens	157/259 (60.6%)	137/240 (57·1%)	3·5 (–5·1 to 12·1)
Enterobacteriaceae	120/195 (61.5%)	105/185 (56.8%)	4·8 (-5·1 to 14·5)
ESBL-producing Enterobacteriaceae	48/84 (57·1%)	45/73 (61·6%)	-4·5 (-19·3 to 10·7)
Pseudomonas aeruginosa	36/63 (57·1%)	39/65 (60.0%)	–2·9 (–19·4 to 13·8)
Multidrug-resistant P aeruginosa	13/24 (54·2%)	6/11 (54·5%)	-0·4 (-31·2 to 31·7)
Extensively drug-resistant P aeruginosa	4/10 (40·0%)	2/5 (40·0%)	0·0 (-43·6 to 40·3)
		1	

Data are n/N (%). *Unstratified Newcombe CIs; inferences drawn from these intervals might therefore not be reproducible.

Table 3: Per-pathogen clinical cure at test-of-cure visit in the microbiological intention-to-treat population

Kollef et al. Lancet Infect Dis 2019; 19(12): 1299-311


Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Clinical experience with ceftolozane-tazobactam in *P. aeruginosa* infections

12 studies

including 2 comparative studies versus polymyxin or aminoglycoside

Yahav et al CMR 2020

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Retrospective comparative study of ceftolozanetazobactam vs. colistin/aminoglycoside in *P. aeruginosa* MDR infections

- 200 patients (100 per arm)
- 70% ICU, 63% ventilated, 42% severe sepsis or shock
- VAP 52%; concomitant BSI 7%
- Combined therapy 72% in the colistin arm vs 15% in TOL/TAZ

Outcome	Ceftolozane/ Tazobactam (N = 100)	Polymyxin/Aminoglycoside (N = 100)	<i>P</i> Value
Clinical cure	81	61	.002
In-hospital mortality	20	25	.40
Acute kidney injury	6	34	<.001

Pogue et al . CID 2020;71:304

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Retrospective comparative study of ceftolozanetazobactam vs. BAT in LRTI due to MDR/XDR *P. aeruginosa*

Outcomes	C/T (n = 118)	Best alternative $(n = 88)$	P value
Primary outcome			
Composite clinical failure	28 (23.7)	43 (48.9)	< 0.001
30-day mortality	18 (15.3)	18 (20.5)	0.331
Adverse drug reaction, any	12 (10.2)	29 (33.0)	< 0.001

 Table 4
 Multivariable logistic regression for factors independently associated with clinical failure

Variables	OR	P value	95% CI	aOR	P value
C/T treatment group	0.326	< 0.001	0.179–0.591	0.267	< 0.001
APACHE II score	1.088	< 0.001	1.042–1.137	1.102	< 0.001

C/T was associated with a 73.3% reduction in clinical failure despite having longer time to active therapy (2.3 vs. 0.7 days)

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Holger et al. Infect Dis Ther 2022; 11(5):1965-1980

Delays in Time to Effective Therapy

- Multicenter, retrospective study describing the use of C/T for MDR *P. aeruginosa* in 20 hospitals across the US
 - C/T susceptibility was not required for enrollment
 - Median time to C/T initiation:
 9 days after culture collection

- C/T initiation within 4 days after culture collection was associated with:
 - Survival: adjusted OR: 5.55 (95% CI: 2.14-14.40)
 - Clinical success: adjusted OR: 2.93 (95% CI: 1.40-6.10)
 - Microbiological cure: adjusted OR:
 2.59 (95% CI: 1.24-5.38)

Study results emphasize the importance of early initiation of effective therapy and availability of susceptibility testing with timely results

Gallagher. Open Forum Infect Dis. 2018;5;ofy280.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

5- Ceftazidime avibactam

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Activity of Ceftazidime-avibactam against MDR/DR *P. aeruginosa*

			EUCAS	T 2018
Antibiotic ^a	MIC ₅₀ (mg/L)	MIC ₉₀ (mg/L)	%S	%R
TIC	32	256	18.8	81.2
TZP	8	128	73.5	26.5
CAZ	4	32	79.7	20.3
FEP	4	16	79.4	20.6
COZ/TZB	1	2	94.6	5.4
CAZ/AVI	2	8	94.2	5.8
ATM	4	32	-	14.8
IPM	2	16	72.8	15.6
MEM	1	16	70.1	14.1
CIP	0.25	>16	61.6	38.4
TOR	0.5	37	83.7	16 3
АМК	4	8	91.6	4
CST	1	2	94.6	5.4

51 Spanish hospitals. 1445 strains

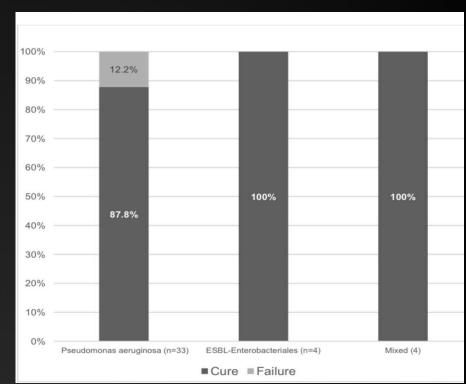
Del Barrio-Tofiño et al. J Antimicrob Chemother. 2019:74:1825-1835

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

RCT: Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including VAP (REPROVE)

	Patients with clinical cure (clinically evaluable population)			Patients with favourable microbiological response* (extended microbiologically evaluable population)			
	Ceftazidime- avibactam (n=257)	Meropenem (n=270)	% difference (95% CI)	Ceftazidime- avibactam (n=125)	Meropenem (n=131)	% difference (95% CI)	
Enterobacteriaceae							
Klebsiella pneumoniae	31/37 (83.8%)	39/49 (79·6%)	4·2 (−13·49 to 20·50)	29/37 (78·4%)	39/49 (79·6%)	–1·2 (–19·60 to 15·96	
Enterobacter cloacae	20/21 (95·2%)	7/11 (63·6%)	31.6 (4.79 to 61.30)	18/21 (85·7%)	7/11 (63.6%)	22·1 (-8·07 to 53·69)	
Escherichia coli	8/11 (72·7%)	14/18 (77·8%)	–5·1 (–39·26 to 25·79)	10/11 (90·9%)	16/18 (88·9%)	2·0 (−29·11 to 26·44)	
Proteus mirabilis	11/11 (100·0%)	7/8 (87.5%)	12·5 (–16·54 to 48·07)	9/11 (81·8%)	6/8 (75.0%)	6·8 (-30·73 to 46·51)	
Serratia marcescens	10/12 (83·3%)	8/8 (100.0%)	–16·7 (–45·58 to 19·48)	9/12 (75·0%)	5/8 (62·5%)	12·5 (–27·47 to 51·82)	
Enterobacter aerogenes	4/6 (66.7%)	2/5 (40·0%)	26·7 (-31·92 to 70·73)	5/6 (83·3%)	3/5 (60.0%)	23·3 (-31·30 to 68·33)	
Gram-negative pathoge	ns other than Entero	bacteriaceae					
Pseudomonas aeruginosa	27/42 (64·3%)	27/35 (77·1%)	–12·8 (–32·25 to 8·01)	18/42 (42·9%)	14/35 (40·0%)	2·9 (−19·13 to 24·32)	
Haemophilus influenzae	10/11 (90·9%)	11/13 (84·6%)	6·3 (−26·19 to 36·09)	11/11 (100·0%)	12/13 (92·3%)	7·7 (−20·08 to 34·00	
Gram-positive aerobes							
Staphylococcus aureus	11/14 (78.6%)	16/22 (72·7%)	5·8 (−25·24 to 32·67)	5/14 (35·7%)	17/22 (77·3%)	-41·6 (-67·04 to -8·36	
*Eradication or presumed era	adication of the baseline	nathogens					
		. pacilogens.					

Torres et al. Lancet Infect Dis 2018;18: 285-95



Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Ceftazidime-avibactam for the treatment of infections due to MDR Gram-negative bacteria other than CRE

- Clinical cure was achieved in 90.2% (37/41) of patients
- The only factor related to clinical failure was receipt of continuous RRT at infection onset
- Development of resistance to CAZ-AVI was not detected in any patients during the follow-up period
- No treatment-related AEs were observed

Vena A, et al. Antibiotics (Basel) 2020;9:71

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Ceftolozane-Tazobactam Versus Ceftazidime-Avibactam for the Treatment of Infections Caused by Multidrug-Resistant *Pseudomonas aeruginosa:* a Multicenter Cohort Study

Almangour M et al. Antim Agents Chemoth 2023

- 200 pts with *P.aeruginosa* infections 100 w C/A VS 100 w C/T
- Overall, 37/200 (19%) had BSI.
- Most common site of infection: HAP/VAP (49%), wound (23.5%) and UTI (10.5%)
- COMBO therapy: 47% pts in C/T VS 35% in C/A (p= 0.084).

					Adjusted Odds ^b
Outcome ^a	C-T (<i>n</i> = 100)	CAZ-AVI (<i>n</i> = 100)	P Value	e Odds Ratio (95% C) Ratio (95% CI)
Clinical cure	61	66	0.463	0.81 (0.43 to 1.49)	0.92 (0.41 to 2.05)
In-hospital mortality	44	37	0.314	1.34 (0.76 to 2.36)	1.13 (0.52 to 2.48)
30-day mortality	27	23	0.514	1.24 (0.65 to 2.35)	1.20 (0.48 to 3.00)
Infection-related mortality	25	19	0.307	1.42 (0.72 to 2.79)	1.00 (0.40 to 2.52)
Microbiologic outcome ^c					
Eradication	46	43	0.843	0.94 (0.46 to 1.89)	
Persistence	32	28			
					NC
30-day readmission ^d	11	14	0.73		NS
30-day readmission due to infection ^d	5	8	0.511		
30-day recurrence ^d	8	13	0.364		
90-day recurrence ^d	14	16	0.96		
Length of hospital stay from onset of infection (days)	30 (20 to 75)	32 (17 to 66)	0.61		
Length of ICU stay from onset of infection (days) ^e	25 (9 to 44)	24 (14 to 40)	0.829		
Duration of mechanical ventilation (days) ^f	23 (7 to 45)	21 (8 to 42)	0.874		
Acute kidney injury	23	17	0.289	1.46 (0.69 to 3.14)	1.74 (0.66 to 4.59)
Diale	6	0			

6- Imipenem-relebactam

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Imipenem-relebactam and MDR P. aeruginosa

- Relebactam potentiates the activity of impenem against CR-PA by hyperproduction of AmpC and loss of OprD porin.
- It has no effect against metallo- β lactamases.
- Imipenem and relebactam are not substrate of efflux pumps.

US study (Lob AAC 2017)

- $MIC_{90/50} = 4/2 \mu g/mL$ (8 times lower than IMI alone (32/16 $\mu g/mL$).
- Only 6.8% were resistant

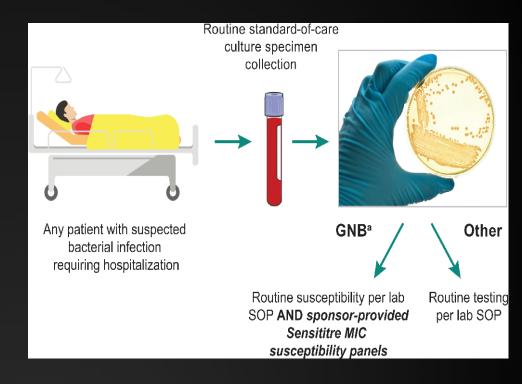
Lob SH, Antimicrob. Agents Chemother. 2017;61:1-9. Livermore DM, J. Antimicrob. Chemother. 2013;68:2286-2290

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Cross-resistance of Ceftolozane/Tazobactam and Imipenem/Relebactam Against Clinical *P. aeruginosa* Isolates from Bloodstream and Respiratory Tract Infections – SMART United States 2019-2021

- To evaluate the activity of C/T and IMI/REL against 1938 *P. aeruginosa* isolates collected from pts with LRTI and BSI in the US (SMART program)
- Among *P.aeruginosa*, 96% and 90% were susceptible to C/T and IMI/REL, respectively. All tested first-line β-lactams, including CARBA, showed activity < 81%.

Table 1. Antimicrobial susceptibility of all P. aeruginosa and resistant subsets											
		% Susceptible									
Phenotype	n	C/T	IMI/REL	CZA	MEM	IMI	P/T	FEP	CAZ	ATM	LVX
All	1986	96.2	90.4	94.5	78.0	64.2	76.9	80.9	79.1	69.4	65.6
MDR	287	77.7	56.8	66.6	22.3	15.7	8.7	12.2	12.9	3.8	21.3
DTR	143	72.7	37.1	51.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEM-NS	436	88.5	57.8	79.4	0.0	5.0	39.4	47.7	48.6	25.9	27.6
C/T-NS	75	0.0	57.3	44.0	33.3	26.7	18.7	6.7	1.3	8.0	22.7
IMI/REL-NS	190	83.2	0.0	69.5	3.2	0.5	31.1	34.7	42.1	16.8	15.3
CZA-R	109	61.5	46.8	0.0	17.4	20.2	10.1	4.6	0.0	5.5	19.3



Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Imipenem-relebactam

- Tested against CR-GNB in an RCT, in the <u>RESTORE-IMI 1 trial.</u>
- HAP, VAP, UTI and IAI caused by CR-GNB, of which <u>CRPA</u> was the most common (16/21 pts IMI-REL and 8/10 allocated to COLI + IMI)
- A favourable overall response to treatment at 28 davs was observed in 13/16 (81%) with IMI-REL compared with 5/8 (63%) with COLI+IMI, adjusted difference 3.1 (95% CI 19.8 to 38.2)

Motsch J, Clin Infect Dis. 2020;70(9):1799-1808.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Imipenem-relebactam in HABP/VAP. RESTORE IMI-2 Baseline *P.aeruginosa* 34 (15.8) IMI/REL vs 48 (22.0) P/Tz

Favorable clinical rensponse	IMI/REL n/N (%)	PIP/TAZ n/N (%)	1	Adjusted difference (95% Cl)
	45/68 (66.2%)	43/66 (65.2%)		4.7 (-10.9, 20.0)
Pseudomonas. aeruginosa ^e	7/15 (46.7%)	17/25 (68.0%)		-21.3 (-49.7, 10.0)
Acinetobacter calcoaceticus-baumannii	1/ <u>1 (100.0%)</u>	4/4 (100.0%)		0.0 ^f
28-day mortality				
Enterobacterales ^d	8/68 (11.8%)	13/66 (19.7%)		-8.5 (-21.9, 3.3)
Pseudomonas aeruginosa ^e	5/15 (33.3%)	3/25 (12.0%)		21.3 (-4.5, 48.9)
Acinetobacter calcoaceticus-baumanni	nii 0/1 (0.0%)	1/4 (25.0%)		-25.0 ^f

-60

Per-pathogen favorable microbiological respon	e IMI/REL n/N (%)	PIP/TAZ n/N (%)	Adjusted difference ^a (95% CI)
Enterobacterales ^b	56/68 (82.4%)	49/66 (74.2%)	10.9% (-2.7, 25.1)
Pseudomonas aeruginosaº	10/15 (66.7%)	18/25 (72.0%)	-5.3% (-35.3, 22.7)
Acinetobacter calcoaceticus-baumannii complex°	1/1 (100.0%)	3/4 (75.0%)	25.0%

-20

-40

Favors IMI/REL

Titov et al. CID 2021; 73(11):4539-48

complex^e

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy Clinica Malattie Infettive Ospedale Policlinico San Martino IRCCS Genoa, Italy

20

Favors PIP/TAZ

40

60

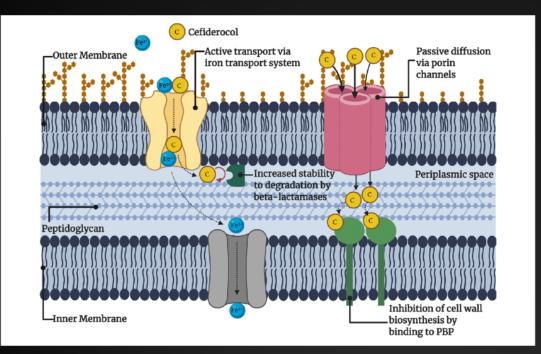
Imipenem-relebactam in real life

- Retrospective study in 8 hospitals USA, Jan 2020 Aug 2021.
- Respiratory infections 11/21 (52%), UTI 3/21 (14%), prosthetic infections 3/21 (14%).
- Overall, positive blood cultures 29%
- P. aeruginosa (16/21, 76%), K. pneumonia (3/21, 14%), and Proteus mirabilis (3/21, 14%),
- <u>15/16 (94%) P. aeruginosa MDR.</u>
- In combination 29% (6/21) (tobramycin more frequent)
- Mortality 7/21 (33%); Clinical cure 13/21 (62%)
- Microbiological recurrence 5/21 (24%). Development of resistance in 1 case (PA)
- Adverse effects: 1 G-I, 1 encephalopathy

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Rebold et al. Open Forum Infect Dis. 2021 Dec; 8(12): ofab554

7- Cefiderocol



Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Cefiderocol

Siderophore cephalosporin that uses the iron transport system to increase its periplasmic penetration.

Stable against many class A, B, C, and D betalactamases

Hackel MA, Antimicrob. Agents Chemother. 2017:61:1-22. Monogue ML,. Antimicrob. Agents Chemother. 2017:61:1-10

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Activity of new antimicrobials against MDR GN

Agent	KPC- producer	NDM- producer	OXA-48-like- producer	Carbapenem- resistant Pseudomonas aeruginosa	Carbapenem- resistant Acinetobacter baumannii	Stenotrophomonas maltophilia
Aztreonam-avibactam						
Cefiderocol						
Ceftazidime-avibactam ¹						
Ceftolozane-tazobactam ¹						
Eravacycline ^{1,2}						
Fosfomycin (intravenous)						
Imipenem-relebactam ³						
Meropenem-vaborbactam ¹						
Plazomicin ^{1,4}						
Polymyxin B ^{1,5} or Colistin ^{1,5}						
Tigecycline ^{1,2}						

Tamma PD, J Pediatric Infect Dis Soc. 2019;8 (3):251-260.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Cefiderocol CR-GNB infections. CREDIBLE study

- Randomized open-label trial
- Cefiderocol 80 vs BAT 38
- 150 patients
 - Pneumonia (n=67)
 - ▹ bacteremia (n=47)
 - ≻UTI (n=36)

Microorganisms

- Acinetobacter (n=56)
- ≻ CRE (n=60)
- P. aeruginosa (n=29)

	Cefiderocol (n=101)	Best available therapy (n=49)
Acinetobacter spp*	21/42 (50%)	3/17 (18%)
Acinetobacter baumannii	19/39 (49%)	3/17 (18%)
Klebsiella pneumoniae	8/34 (24%)	4/16 (25%)
Without Acinetobacter spp	6/28 (21%)	4/15 (27%)
Pseudomonas aeruginosa	6/17 (35%)	2/12 (17%)
Without Acinetobacter spp	2/11 (18%)	2/11 (18%)
Escherichia coli	1/6 (17%)	0/3
Without Acinetobacter spp	0/3	0/1
Stenotrophomonas maltophilia	4/5 (80%)	NA
Without Acinetobacter spp	2/3 (67%)	NA

Bassetti et al. Lancet Infect Dis. 2021:21(2):226-240

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

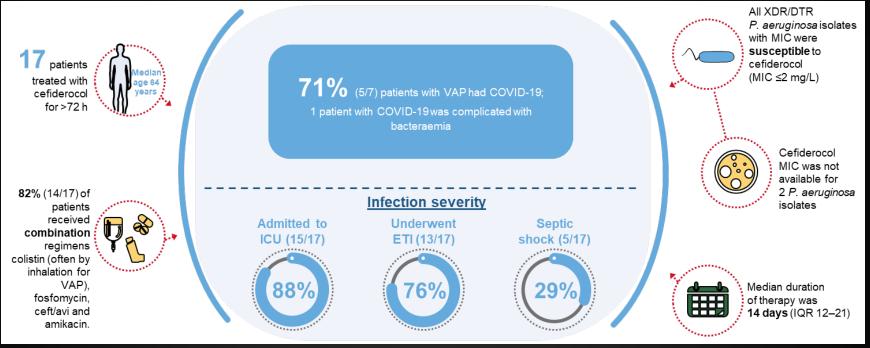
Isolates with resistant phenotypes were more susceptible to cefiderocol than to comparators (EU+USA)

Cefiderocol demonstrated the highest activity against *P. aeruginosa* when compared with other antimicrobial agents

Susceptibility of isolates with resistant phenotypes to cefiderocol and comparator agents

Isolates, (n)	Susceptibility, % ^b								
isolates, (II)	CFDC	I/R	MVB	CAZ/AVI	TZP	MEM	CST ^e	C/T	
interobacterales (8,047)									
CRE (169)	87.6	71.0 ^c	75.7	81.7	0.6	10.1	78.7		
MVB-R (41)	70.7	7.3°		43.9	0	0	48.8		
I/R-R (49)	69.4		24.5	40.8	4.1	10.2	55.1		
CAZ/AVI-R (37)	54.1	8.1°	37.8		0	21.6	56.8		
BL/BLI-R (23)	47.8					0	47.8		
P. aeruginosa (n=2,282)									
XDR (256)	96.9	73.0		73.4	d	7.4	99.2	72.3	
I/R-R (48)	100			35.4	d	2.1	100	20.8	
C/T-R (60)	85.0	43.3		25.0	d	3.3	100		
CAZ/AVI-R (83)	89.2	47.0			d	8.4	100	37.3	
BL/BLI-R (27)	100.0				d	0	100		
Acinetobacter spp. (650)									
MEM-R (306)	91.5°						76.4		

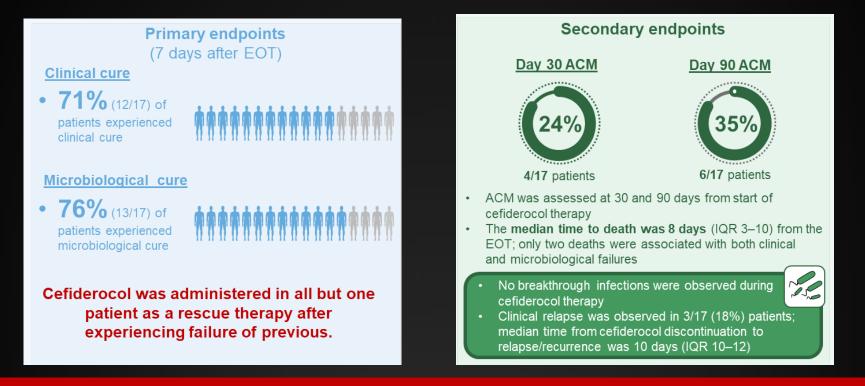
Shortridge D et al. Microbiol Spectr 2022;10:e0271221



Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Cefiderocol in patients with XDR/DTR *P. aeruginosa* infection: a prospective, observational study

 Prospective observational study including 17 pts (median age 64 yrs) with XDR and DTR *P.aeruginosa* infections, unresponsive to BAT w/o any other available treatment options.


Meschiari M. et al. JAC Antimicrob Resist 2021;3:dlab188

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Cefiderocol in patients with XDR/DTR *P. aeruginosa* infection: a prospective, observational study

These favourable outcomes are even **more relevant** since almost 90% pts were in ICU and 30% of the cases were critically ill.

Meschiari M. et al. JAC Antimicrob Resist 2021:3:dlab188

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

8- Conclusions

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Conclusions

- Resistance in *P.aeruginosa* is complex and driven by various mechanisms (eg, porin reduction, β-lactamase, efflux pumps).
- Because of side effects and low efficacy, colistin and aminoglycosides should no longer be used for treatment of serious *P.aeruginosa* infections.
- In light of the accumulated clinical experience and its mechanism of action, ceftolozane-tazobactam should be considered the first choice agent for infections caused by MDR *P.aeruginosa*.
- Ceftazidime-avibactam also represent a good treatment options, but attention should be given to the potential negative ecological impact.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

Conclusions

- Resistance to IMI/REL and cefiderocol was not common among recent clinical isolates of *P. aeruginosa.*
- Even if further real life studies are needed, both agents represent important treatment options.
- Current data suggest that susceptibility to all new antibiotics should be tested.

Università degli Studi di Genova Dipartimento di Scienze della Salute (DISSAL) Genoa, Italy

