

Diagnostica e terapia dell'aspergillosi invasiva nel paziente ematologico

Małgorzata MIKULSKA, MD, PhD, FESCMID, FECMM

Associate Professor of Infectious Diseases University of Genoa, Dipartimento di Scienze della Salute (DISSAL)

and Ospedale Policlinico San Martino, Genoa, Italy

DISCLOSURES

Lecture or board meeting, grants to my institution None related to this presentation

- Allovir
- bioMerieux
- Gilead
- Janssen
- Moderna
- Mundipharma
- Pfizer

ID consult on IFD in hematology

• Why it may feel like mission impossible?

- 1. Haematology specialists may be more knowledgeable than ID in IFD in haematology/HSCT
- 2. They care deeply about their patients ... and they do not accept that infection might lead to death
- 3. Clinical signs and symptoms might be very limited
- 4. Definite diagnosis is difficult due to limited feasibility and sensitivity of biopsy ...
- 5. Once you put your foot down but make a mistake regaining the trust is not easy

Specifics of IFD in haematology

Prophylaxis

High rate (>6-8%) of IMI in certain patient groups but not in others, thus anti-mould prophylaxis strongly recommended in certain groups
Breakthrough IFD present, also due to persistent immune deficit

Ascioglu S, et al. Clin Infect Dis. 2002;34(1):7–14; De Pauw B, et al. Clin Infect Dis. 2008;46(12):1813–21; Donnely JP, et al. Clin Infect Dis. 2020;71(6):367–76; Maertens JA et al J Antimicrob Chemother. 2018 Dec 1;73(12):3221-3230; Stemler et al. Ann Hematology 2020 Jul;99(7):1429-1440; Fleming et al. Intern Med J 2014 Dec; 44(12b):1283-97; Girmenia et al. Biol Blood Marrow Transplant. 2014 Aug;20(8):1080-8

Anti-fungal prophylaxis

 Table 1
 Established risk groups for IFD and recommended antifungal prophylaxis coverage in adults

Risk level	Risk groups	Recommended Sol prophylaxis†	Table 3. ECIL recommendations on primary antifungal pr chemotherapy $^{\alpha}$	ophylaxis in	adult patients with AML and MDS undergoing intensive remission-induction
High risk >10% incidence	Neutrophil <0.1 \times 10 ⁹ /L for >3 v	weeks or First line:	Antifungal agent	Grading	Comments
U-11 TO	HSCT) Corticosteroids >1 mg equivalent and n	s (é.g. allogeneic Posacona Alternate a g/kg prednisolone Voric neúťřopňils < n^x 107/L toř I	Posaconazole oral solution 200 mg q8h <i>or</i> tablet 300 mg q24h following a loading dose of 300 mg q12h on day 1	A-I	Recommended if baseline incidence of mould infections is high. Given the increased absorption of the tablet, it is likely that the need for therapeutic drug monitoring will become restricted to specific popula- tions (e.g. severe mucositis).
	>1 week Corticosterp equiv <mark>a</mark>	oids >2 mg/kg prednisolone alent >2 weeks	Fluconazole 400 mg q24h	B-I	Only recommended if the incidence of mould infections is low. Fluconazole may be part of an integrated care strategy together with a mould-directed diagnostic approach.
	Unrelate ลไ	ed. mismatched or cord blood Ilogeneic HSCT GVHD – extensive or severe	Itraconazole oral solution 2.5 mg/kg q12h	B-I	Recommended if baseline incidence of mould infections is high. May be limited by drug-drug interactions or patient tolerability. It is recommended to monitor serum drug concentrations.
		AMIinduction/reinduction ALL induction/reinduc	Voriconazole 200 mg q12h	B-II	Recommended if baseline incidence of mould infections is high. It is recommended to monitor serum drug concentrations.
B	vidence	MDS	All echinocandins	C-II	Insufficient data on efficacy and tolerability.
ole in setting of alloH	SCT) incidence of I	D for mucositie Allogene	Liposomal amphotericin B	C-II	Insufficient data on dose, frequency and duration, as well as on efficacy and tolerability.
ເກດ ເຊິ່ງ and ເຊິ່ງ and		ກອບປະດູບາ Lym	Lipid-associated amphotericin B	C-II	Insufficient data on dose, frequency and duration, as well as on efficacy and tolerability.
ιτ.χ Νο οταφειζαγίτηταλιο Β υ 1a,	н _п //	/en/ Veryrickt ประรุ tess 5%แ ว./ incidence of FD No mucositis	Aerosolized liposomal amphotericin B (10 mg twice weekly) Amphotericin B deoxycholate Aerosolized amphotericin B deoxycholate	B-I A-II agains A-I against	Only when combined with fluconazole 400 mg q24h. st t
oplasms an tumours			^a Primary antifungal prophylaxis might be considered during Treatment for solid org	intensified o	consolidation therapy (see text).

Breakthrough IFD

Usually approx. 3%, up to 12% in some cohorts Pathogens: rare moulds and azole-resistant *Aspergillus* species

Lamoth F et al. *Clin Infect Dis* 2017;64(11):1619–1621; Cornely et al. N Engl J Med. 2007 Jan 25;356(4):348-59; Ullmann et al. N Engl J Med. 2007 Jan 25;356(4):335-47; Winston et al. Biol Blood Marrow Transplant 2011 Apr;17(4):507-15; Auberger et al. J Antimicrob Chemother 2012 Sep;67(9):2268-73; Pagano et al. Clin Infect Dis 2012 Dec;55(11):1515-21; Lerolle et al. Clin Microbiol Infect 2014 Nov;20(11):0952-9; Corzo-Leon et al. Mycoses 2015 Jun;58(6):325-36; Biehl et al. J Antimicrob Chemother 2016 Sep;71(9):2634-41; Kuster et al. Transpl Infect Dis 2018 Dec;20(6):e12981; Fisher et al. JAMA. 2019 Nov 5;322(17):1673-1681.

Specifics of IFD in haematology

Prophylaxis	 High rate (>6-8%) of IMI in certain patient groups but not in others, thus anti-mould prophylaxis strongly recommended in certain groups Breakthrough IFD present, also due to persistent immune deficit
Diagnosis	EORTC/MSG diagnostic criteria available for 20 years and updated, but not developed for daily clinical practice (e.g. bronchoinvasive aspergillosis – unclassified)

Ascioglu S, et al. Clin Infect Dis. 2002;34(1):7–14; De Pauw B, et al. Clin Infect Dis. 2008;46(12):1813–21; Donnely JP, et al. Clin Infect Dis. 2020;71(6):367–76; Maertens JA et al J Antimicrob Chemother. 2018 Dec 1;73(12):3221-3230; Stemler et al. Ann Hematology 2020 Jul;99(7):1429-1440; Fleming et al. Intern Med J 2014 Dec; 44(12b):1283-97; Girmenia et al. Biol Blood Marrow Transplant. 2014 Aug;20(8):1080-8

20 years of diagnosing invasive mould infections in the immunocompromised

• Risk factors + suggestive clinical presentation

EORTC/MSGERC criteria: 2002, 2008 and 2019 developed for clinical research in the immunocompromised at risk of IFD

- Probability levels of having invasive fungal infection:
 - **Proven** Histopathologic, cytopathologic, or direct microscopy in biopsy or culture from a sterile site
 - Probable Presence of Host factor
- + Clinical criterion
- + Mycology criterion

Possible Presence of Host factor

+ Clinical criterion

• At least 1 PCR test positive in plasma/serum/whole blood and 1 PCR test positive in BAL fluid

BAL, bronchoalveolar lavage; GM, galactomannan; GvHD, graft-versus-host disease; HSCT, haematopoietic stem-cell transplantation; IFD, invasive fungal disease; PCR, polymerase chain reaction. Ascioglu S, et al. *Clin Infect Dis* 2002;34:7–14; De Pauw B, et al. *Clin Infect Dis* 2008;46:1813–21; Donnelly JP, et al. *Clin Infect Dis* 2020;71:1367–76.

EORCT/MSG 2019 Clinical criteria for pulmonary IMI

Wedge-shape and segmental or lobar consolidations

Reverse halo sign

with the wisdom of hindsight

19 yo female with SAA undergoing second alloHSCT Long term neutropenia, no mould active prophylaxis GM screening positive 0.6

EORTC/MSGERC criteria were designed for clinical trials and epidemiology

Not for everyday clinical decisions

 Table 1. Patterns of invasive fungal disease in pratice, based on 2008 EORTC-MSG criteria.

Î.	А	В		C D			D	E
	-		1	Ш		IV	÷.	
Radiological signs and clinical symptoms	Νο	Persistent febrile neutropenia	No	Clinical infiltrate n the EORTC/I	any new ot fulfilling NSG criteria)	Radiologic (den circumscri with or w sign, air-c or	al signs on CT se, well- bed lesions(s) ithout a halo crescent sign, cavity)	Not considered necessary
Mycology results	Negative	Negative	Positive biomarker or microscopy or culture	Negative	Positive biomarker or microscopy or culture	Negative	Positive biomarker or microscopy or culture	Positive tissue or specimen from a sterile site
Clinical evidence of IFD	No	No	No	No	No	Yes	Yes	Yes
Mycological evidence of IFI	No	No	Yes	No	Yes	No	Yes	Yes
Final diagnosis		1	Unclassified			Possible IMD	Probable IMD	Proven IMD

blood 2012 119: 1831-1837 Prepublished online October 18, 2011; doi:10.1182/blood-2011-04-351601

The strategy for the diagnosis of invasive pulmonary aspergillosis should depend on both the underlying condition and the leukocyte count of patients with hematologic malignancies

Anne Bergeron, Raphaël Porcher, Annie Sulahian, Cédric de Bazelaire, Karine Chagnon, Emmanuel Raffoux, Anne Vekhoff, Muriel Cornet, Françoise Isnard, Benoti Brethon, Claire Lacroix, Jean Louis Portor, Claire Bouges, Francis Berouin, Abdellatif Tazi and Patricia Ribaud

Figure 1. Lung CT scans from 2 different patients. (A) Nodule with a halo sign evealing angioinvasive aspergillosis in an AL patient. (B) Centrilobular nodules and ree-in-bud opacities showing airway-invasive aspergillosis in a patient who undervent an allogeneic HSCT.

Maertens et al. Haematologica 2012; Bergeron et al. Blood 2011

Performance of GM in BAL, the role of cut-off

Cut-off value	No. of partici-	Summa mates (pants	ary esti- (95% CI)	Implication	S			Qu Co	uality and omments
dies excep had a risk of all 727	0.5 ODI t oʻne (12 high ies) bias in r ການເບັດ domains. For all stud ie:	229 with stua- pro pro IA	Sensitivi ovérfôr ^' obable 894 pos	ity: 0.88 At a ^(95% دו ט.75 t 1.00) with Spec sible (95%	a prev b ' ' ' cificit 6 CI 0	valence of 12%, 1 probáble IA. Or t Of the 880 patier <u>test res</u> ult and m y: 0.81 a positi .71 to negativ	20 out of 1000 patie nest, 14 will be mis nts with possible or nav be unnecessari ive test, 106 will inc ve tests, 14 will have	ents will develop prove ssea. no IA, 167 will have a f ly treated, Of all 273 pa leed have proven or pr e IA after all (2%).	false-positive atients with obable IA; of a
develop (2 will hav d. Of all 1 roven or (3%).	proven or in in ve a false-posit 56 patients wir probable IA; of	erns regard- g applica- bility v ive low. th a f all 844 neg-	1.0 ODI (11 stud were	177 with straven o ies) -	prob IA	Sensitivity: 0.78 (95% CL 0.63 tთა, bable 0.95) 594 with possible or no IA	At a prevalence of the solution of the solutio	of 12%, 120 out of 1000 จะรร. 26 เพเป็ปคุณขัตรรสน 80 patients with possil ult and may be unnece positive test, 94 will i ative tests, 26 will ha	patients will ble or no IA, 6 essarily treate ndeed have p ve IA after all
interpretation and extrapolation of these results has to be Note, the populations and results were very heterogeneous. Therefore performed with caution.							is. Therefore,		

de Heer K, Gerritsen MG, Visser CE, Leeflang MMG. Galactomannan detection in broncho-alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. *Cochrane Database of Systematic Reviews* 2019, Issue 5. Art. No.: CD012399. DOI: 10.1002/14651858.CD012399.pub2.

Faster GM results - Towards point-of-care testing

- Reliable, quantitative «almost» PoC for BAL fluid (with pre-treatment): 15–25 minutes, two assays available:^{1,2}
- 1. Aspergillus galactomannan LFA
- 2. Aspergillus-specific **LFD** that detects the mannoprotein antigen secreted by growing Aspergillus with JF5 MAbs
- A 2015 meta-analysis investigated LFD in BAL:²
 - Sensitivity: 86% (95% CI: 76–93)
 - Specificity: 93% (95% CI: 89–96)
- Included in the 2018 ESCMID IA guidelines (B II)³
- Qualitative/semi-quantitative results were provided initially > optical reader
- Compared with visual readouts, digital readouts provide quantitative results and perform better with BAL (235 samples from HM patients) for both assays – LFA and LFD¹
- There was a good correlation with traditional GM for LFA5⁵

Aspergillus PCR: blood and BAL

- Included in some 2018 ESCMID, 2019 EORTC/MSG guidelines
- In addition to in-house methods, commercial assays are available
 - For A. fumigatus or for several species, not all differentiate between species
 - Some detectsalso mutations associated with azole-resistance in A. fumigatus (TR₃₄/L98H, T289A, Y121F)
- Initial studies: sensitivity 68-94%, specificity 80-98%
- Recent reports: sensitivity not specificity seems a crucial issue
 - Sensitivity/specificity 30%/91%; 40%/69%; 65%/100%
- The performance variable, higher in culture positive samples
 - Our experience: sensitivity for proven/probable IA in H
 - 40% with one commercially available assay
 - 92% with another

Clinical impact of PCR-based Aspergillus and azole resistance detection in invasive aspergillosis. A prospective multicenter study. Unexpected lessons

- Prospective study in the Netherlands and Belgium
- Evaluated the clinical value of the multiplex AsperGenius®PCR in hematology patients from 12 centers
- This PCR detects the most frequent cyp51A mutations in A. fumigatus conferring azole-resistance
- Inclusion: patients with a CT-scan showing a pulmonary infiltrate and BAL within 48h (=possible IA)
- The primary endpoint antifungal treatment failure in patients with azole-resistant IA
- 323 patients enrolled (32% alloHSCT), complete mycological and radiological information available in 94% (276/323)
- Probable IA 36% (99/276)
- PCR testing in BAL in 91% (293/323): positive in 40% (116/293), with A. fumigatus DNA in 30% (89/293)
- The resistance PCR was conclusive in 65% (58/89) and resistance detected in 8/58 (14%)

Table 2. Microbiology Results Including Bronchoalveolar Fluid Galactomannan, AsperGenius Polymerase Chain Reaction, and Culture

		BALf GM	
	<0.5	0.5–0.99	≥1
Number of patients (n) ^a	215	32	74
Aspergenius performed	193	31	68
PCR Aspergillus species-positive	50 (26%)	16 (52%)	50 (74%)
PCR Aspergillus species-negative	143 (74%)	15 (48%)	18 (26%)
PCR Aspergillus fumigatus-positive	38 (20%)	12 (39%)	39 (57%)
PCR Aspergillus fumigatus-negative	156 (80%)	19 (61%)	29 (43%)
PCR Aspergillus terreus-positive	1 (0.5%)	0 (0%)	2 (3%)

Clinical impact of PCR-based Aspergillus and azole resistance detection in invasive aspergillosis. A prospective multicenter study.

	GM pos (N=77)	Culture pos (N=24)	PCR pos (N=119)	PCR pos in duplicate (N=67)	GM and culture neg but PCR pos (N=62)	GM and culture neg but PCR pos in duplicate (N=28)	GM, culture and PCR neg (N=154)
Antifungal therapy started at BAL (-5, +14 days) (n/N)	72/77 (94%)	23/24 (96%)	105/119 (88%)	62/67 (93%)	52/62 (84%)	24/28 (86%)	105/154 (68%)
Median (IQR) days of antifungals	27 (11 – 73)	38 (17 – 88)	32 (10 – 89)	33 (12 – 89)	34 (10 – 123)	71 (15 – 135)	18 (7 – 63)
6-week mortality (n/N)	23/76 (30%)	8/24 (33%)	26/119 (22%)	16/67 (24%)	9/62 (15%)	4/28 (14%)	24/153 (16%)

BAL galactomannan positivity was associated with higher mortality (p=0.004) Mortality of patients with an isolated positive Aspergillus PCR in BAL was comparable to those with a negative PCR (p=0.83)

BDG – to be used in combination only

Specifics of IFD in haematology

Prophylaxis	 High rate (>6-8%) of IMI in certain patient groups but not in others, thus anti-mould prophylaxis strongly recommended in certain groups Breakthrough IFD present, also due to persistent immune deficit 	
Diagnosis	EORTC/MSG diagnostic criteria available for 20 years and updated, but not developed	
	for daily clinical practice (e.g. broncholnvasive aspergillosis – unclassified)	
Prognosis	High mortality, particularly if ongoing severe immunosuppression > fear of rapid deterioration + suboptimal diagnosis > leading to empirical therapy	

Ascioglu S, et al. Clin Infect Dis. 2002;34(1):7–14; De Pauw B, et al. Clin Infect Dis. 2008;46(12):1813–21; Donnely JP, et al. Clin Infect Dis. 2020;71(6):367–76; Maertens JA et al J Antimicrob Chemother. 2018 Dec 1;73(12):3221-3230; Stemler et al. Ann Hematology 2020 Jul;99(7):1429-1440; Fleming et al. Intern Med J 2014 Dec; 44(12b):1283-97; Girmenia et al. Biol Blood Marrow Transplant. 2014 Aug;20(8):1080-8

Empirical antifungal therapy

40 years ago

Definition: antifungal treatment in **neutropenic** patients with persistent fever despite 4-7 days of broad-spectrum antibiotics, or in patients with relapsing fever

Reason: IFD during neutropenia is impossible to diagnose:

low yield of cultures,

late radiological signs on X-ray

and is associated with high mortality

Today

]	Widely available galactomannan, with short turn-around time (use of
	point-of-care tests in selected cases)

Rapidly available CT (same day)

Available Aspergillus-PCR in serum and BAL, serum glucan (IC, PiP) with short turn-around time

Rapidly available **BAL** – to avoid false negative results due to antifungal treatment (Aspergillus PCR might be more helpful than GM)

> Only as time-buying strategy

MAJOR ARTICLE

Empiric vs Preemptive Antifungal Strategy in High-Risk Neutropenic Patients on Fluconazole Prophylaxis: A Randomized Trial of the European Organization for Research and Treatment of Cancer

Johan Maertens,¹ Tom Lodewyck,² J. Peter Donnelly,³ Sylvain Chantepie,⁴ Christine Robin,⁵ Nicole Blijlevens,³ Pascal Turlure,⁶ Dominik Selleslag,² Frédéric Baron,⁷ Mickael Aoun,⁸ Werner J. Heinz,⁹ Hartmut Bertz,¹⁰ Zdeněk Ráčil,¹¹ Bernard Vandercam,¹² Lubos Drgona,¹³ Valerie Coiteux,¹⁴ Cristina Castilla Llorente,¹⁵ Cornelia Schaefer-Prokop,³ Marianne Paesmans,⁸ Lieveke Ameye,⁸ Liv Meert,¹⁶ Kin Jip Cheung,¹⁶ Deborah A. Hepler,¹⁷ Jürgen Loeffler,¹⁸ Rosemary Barnes,¹⁹ Oscar Marchetti,^{20,21} Paul Verweij,^{3,©} Frederic Lamoth,²⁰ Pierre-Yves Bochud,²⁰ Michael Schwarzinger,²² and Catherine Cordonnier⁵; for the Infectious Diseases Group and the Acute Leukemia Group of the European Organization for Research and Treatment of Cancer

2012-2015

days after

OXFORD

hiv medicine association

pre-emptive: twice weekly galactomannan screening and CT scan on demand 549 included, 80% AML, 20% alloHSCT

	Pre-emptive, % (95%Cl)	Empirical, % (95%Cl)	Ρ
OS	96.7% (93.8%–98.3%)	93.1% (89.3%–95.5%)	NS
Rate of IFDs at day 84	7.7% (4.5%–10.8%)	6.6% (3.6%–9.5%)	NS
Rate of patients who received empirical treatment with caspofungin	27%	63%	<.001

Specifics of IFD in haematology

Diagnosis	EORTC/MSG diagnostic criteria available for 20 years and updated, but not developed for daily clinical practice (e.g. bronchoinvasive aspergillosis – unclassified)
Prognosis	High mortality, particularly if ongoing severe immunosuppression > fear of rapid deterioration + suboptimal diagnosis > leading to empirical therapy
Prophylaxis	High rate (>6-8%) of IMI in certain patient groups but not in others, thus anti-mould prophylaxis strongly recommended in certain groups Breakthrough IFD present, also due to persistent immune deficit
Treatment	Drug-drug interactions between triazoles and numerous anti-neoplastic drugs – need for TDM Frequent hepatic toxicity due to numerous causes (chemotherapy, hepatic Graft vs. Host Disease) Optimal lenght of IMD treatment ? (until the resolution of immune deficit)

Ascioglu S, et al. Clin Infect Dis. 2002;34(1):7–14; De Pauw B, et al. Clin Infect Dis. 2008;46(12):1813–21; Donnely JP, et al. Clin Infect Dis. 2020;71(6):367–76; Maertens JA et al J Antimicrob Chemother. 2018 Dec 1;73(12):3221-3230; Stemler et al. Ann Hematology 2020 Jul;99(7):1429-1440; Fleming et al. Intern Med J 2014 Dec; 44(12b):1283-97; Girmenia et al. Biol Blood Marrow Transplant. 2014 Aug;20(8):1080-8

Invasive aspergillosis. First line treatment

	ECIL-6 2016	IDSA 2016	ESCMID – ECMM – ERS 2018	Australia 2021
		(Strength of recommendation and evidence)		
Voriconazole	A I (oral CIII)	Strong. High quality	AI	AI
	TDM indicated			
Isavuconazole	AI	Alternative to voriconazole A II	AI	AI
Posaconazole	-	-	-	A I*
L-AMB 3mg/kg	BI	Strong. Moderate quality	BII	BII
ABLC 5mg/kg	BII	Weak. Low quality	C III	-
ABCD	CI	Weak. Low quality	DI	-
D-AMB	A I against use	-	DI	-
Caspofungin	СІІ	Not recommended	СІІ	СІІ
Micafungin	-	Weak. Moderate quality	C III	СІІ
Anidulafungin	-	-	-	-
Itraconazole	C III	-	C III	-
Voriconazole + anidulafungin	CI	Weak. Moderate quality	CI	CI
Other combinations	C III	-	D III	-

Tissot et al. Haematologica 2017; Patterson et al. CID 2016; Ullmann et al. CMI 2018; Douglas et al. Internal Medicine Journal 2021; *Posaconazole not inferior to voriconazole - Maertens et al. Lancet. 2021

Antifungal agents	Fosmanogepix	Ibrexafungerp	Olorofim	Opelconazole	Rezafungin
Pathogens					
Aspergillus calidoustus Aspergillus fumigatus Azole-resistant A. fumigatus Aspergillus flavus Aspergillus lentulus Aspergillus nidulans Aspergillus niger Aspergillus terreus Aspergillus tubingensis					
Cunninghamella Lichtheimia Mucor Rhizopus					
<i>Fusarium spp.</i>					
Alternaria alternata Cladosporium spp. Paecilomyces variotii					
Purpureocillium lilacinum Scopulariopsis spp. Rasamsonia spp.					
Scedosporium spp. Lomentospora prolificans					

Hoenigl M, et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs. 2021 Oct;81(15):1703-1729. doi: 10.1007/s40265-021-01611-0.

When Primary Antifungal Therapy Fails

Table 1. Causes of antifungal therapy failure.

Best abstracts will be granted travel awards!