

Imipenem/relebactam

Maddalena Giannella MD, PhD
Infectious Diseases Unit, IRCCS AOU Bologna
Department of Medical and Surgical Sciences
University of Bologna

Conflicts of interest

- Grants from Pfizer, Shionogi and MSD as a speaker
- Grants from MSD as an advisory board member
- Grant from Pfizer for a research project

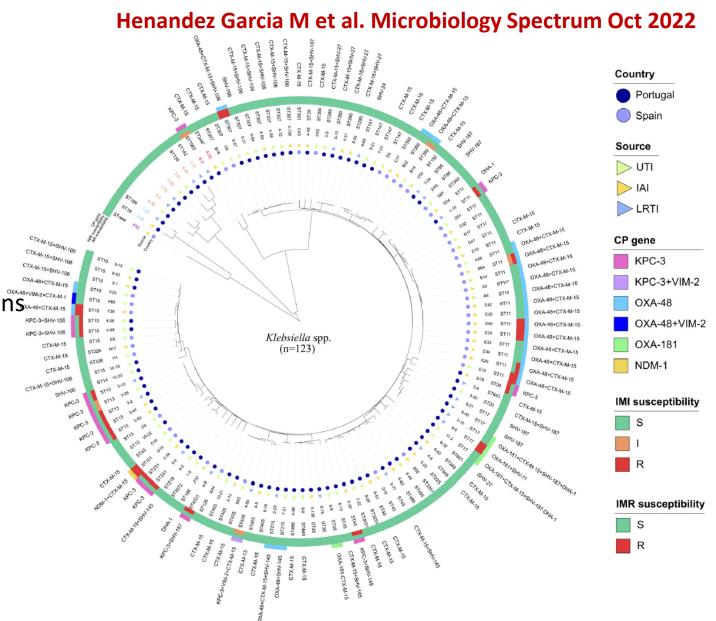
Imipenem/Relebactam

- * Relebactam (REL) is a b-lactamase inhibitor that was designed to have inhibitory activity against class A and C b-lactamases.
- REL is not active against MBL and class D β -lactamases (OXA-48) and does not restore IMI susceptibility in *Acinetobacter baumannii* strains
- IMI/REL activity against P. aeruginosa is due also to the effect on porin loss, efflux pumps as well as Pseudomonas-derived cephalosporinase

In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme

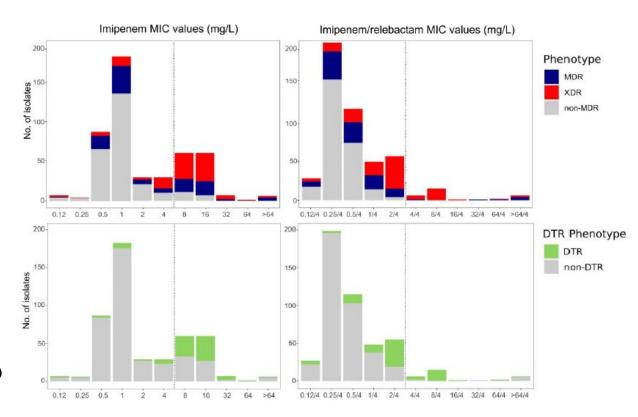
Karlovsky JA et al. J Antimicrob Chemother 2018; 73: 1872–1879

In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens


Organism	Antimicrobial agent	MIC50 (mg/L)	MIC90 (mg/L)	MIC range	Susceptible (%)
P. aeruginosa (1705)	IMI-REL ^a	0.25 1	2 16	≤0.03 to >32 ≤0.5 to >32	94.7 72
IMI-non susceptible <i>P. aeruginosa</i> (477)	IMI-REL	2	32	0.25 to >32	81.1
	IMI	16	32	8 to >32	0
K. pneumoniae (1591)	IMI-REL	0.12	1	≤0.03 to >32	94.8
	IMI	≤0.5	4	≤0.5 to >32	88.7
IMI-non susceptible <i>K.</i> pneumoniae (179)	IMI-REL	2	>32	0.06 to >32	54.2
	IMI	16	>32	4 to >32	0
A. baumannii (n=486)	IMI-REL	32	>32	0.12 to >32	10.3
	IMI	32	>32	≤0.5 to >32	10.1
IMI-non susceptible <i>A.baumannii</i> (n=437)	IMI-REL	>32	>32	0.5 to >32	0.2
	IMI	32	>32	4 to >32	0

^aFor comparative purposes only, MICs of imipenem/relebactam were interpreted using imipenem EUCAST breakpoints

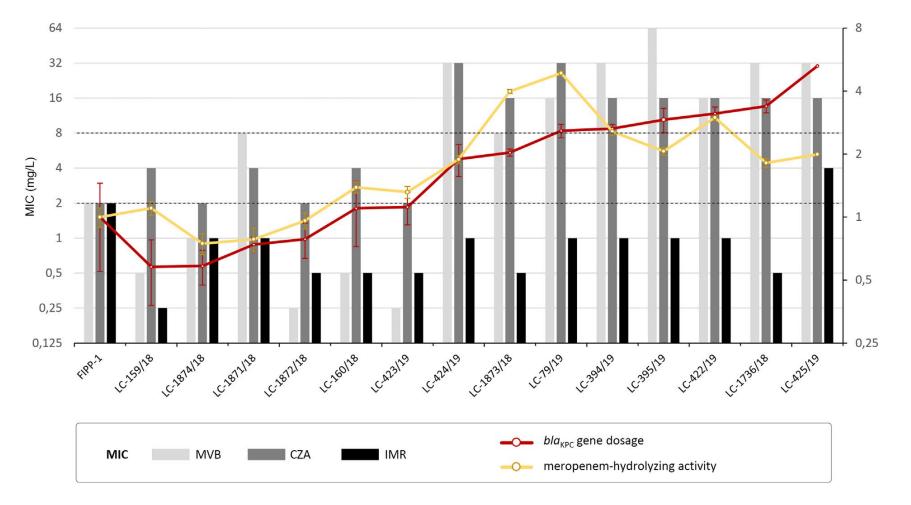
Imipenem-Relebactam Susceptibility in Enterobacterales Isolates Recovered from ICU Patients from Spain and Portugal (SUPERIOR and STEP Studies)


- 747 Enterobacterales isolates
 - > 378 Escherichia coli
 - ➤ 252 Klebsiella spp.
 - > 64 Enterobacter spp.
- Imipenem-relebactam 98.7% susceptible
 - > 80.4% in CPE *K. pneumoniae*
- Imipenem-relebactam inactive against 10 strains
 - ➤ 9 K. pneumoniae
 - ➤ 1 E. cloacae
- 123 sequenced *K. pneumoniae*
 - ➤ 41 CPE
 - ✓ OXA-48 48.8%
 - ✓ KPC-3 34.1%
 - ✓ OXA-181 7.3%
 - ✓ NDM-1 2.4%

In vitro activity of imipenem/relebactam against *Pseudomonas aeruginosa* isolates recovered from ICU patients in Spain and Portugal (SUPERIOR and STEP studies)

Henandez Garcia M et al. J Antimicrob Chemother 2022; 77: 3163–3172

- P. aeruginosa isolates (n = 474) recovered from cUTI,
 cIAI and LRTI in 11 Portuguese and 8 Spanish ICUs
- Susceptibility to imipenem/relebactam 93.7%, ceftazidime/avibactam 93.5% and ceftolozane/tazobactam 93.2% was comparable
- Imipenem/relebactam was inactive against all GES 13 producers and most of VIM producers (8/10)
- Mutations in genes affecting porin inactivation, efflux pump overexpression and LPS modification might also be involved in imipenem/relebactam resistance

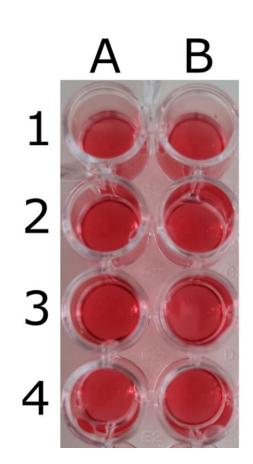

• Among strains resistant to ceftazidime/avibactam (31/474), ceftolozane/tazobactam (32/474) or both (14/474), the activity of imipenem/relebactam was 64.5% (20/31), 28.1% (9/32) and 35.7% (5/14)

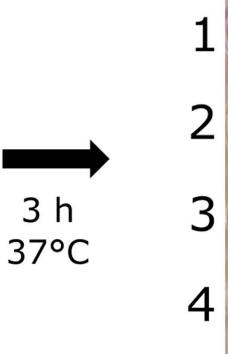
Deciphering variable resistance to novel carbapenem-based b-lactamase inhibitor combinations in a multi-clonal outbreak caused by Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam

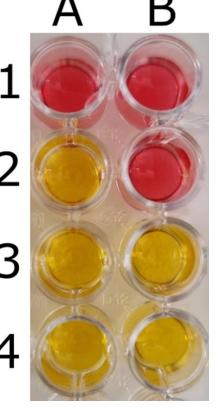
Di Pilato V et al. Clin Microbiol Infect 2023

15 KPC-Kp strains (9 CZA-R, 6 CZA-S) from an outbreak involving 6 patients in a neurorehabilitation facility

Increased *bla*_{KPC} Copy Number and OmpK35 and OmpK36 Porins Disruption Mediated Resistance to Imipenem/Relebactam and Meropenem/Vaborbactam in a KPC-Producing *Klebsiella pneumoniae* Clinical Isolate


Gaibani P et al. AAC 2022


	ST	Antimicrobial resistance determinants		Porins		bla _{KPC} copy no.		
		Beta- lactam	Aminoglyc osides	ompK35	ompK36	Plasmid_re plicons (InC)		
KPC- KP_TO1	512	bla _{KPC-3} , bla _{TEM1A} , bla _{OXA-9}	aadA2b, aac(6')-Ib- cr	Truncated at aa 41	GD insertion at aa 134-135		1	
KPC- KP_TO3	512	bla _{KPC-66} , bla _{TEM1A} , bla _{OXA-9}	aadA2b, aac(6')-Ib- cr	Truncated at aa 41	GD insertion at aa 134-135		0,85	
KPC- KP_TO5	512	bla _{KPC-3} , bla _{TEM1A} , bla _{OXA-9}	aadA2b, aac(6')-Ib- cr	Truncated at aa 41	Truncated at aa 310	ColRNAI, IncFIB (pQIL), IncFII(K)	4,59	CAZAVI, MIC 8 MER/VAB, MIC ≥25 IMI/REL, MIC 8


Rapid detection of imipenem/relebactam susceptibility/resistance in Enterobacterales

Bouvier M et al. Clin Microbiol Infect 2023

- 94 Enterobacterales including KPC, NDM, VIM-1, OXA, OXA and NDM coproducers, IMI-1, CTX-M-1, and a negative control without b-lactamase
- 44.7% (42/94) were resistant to IPR and 55.3% (52/94) were susceptible (BMD/EUCAST)
- All 52 IPR-susceptible strains were also negative for the Rapid test
- 40/42 IPR-resistant strains were correctly detected as positive by the Rapid IPR NP test. 2 FN OXA-48 MIC 8

Imipenem-relebactam: clinical trials

DISEASE

DESIGN

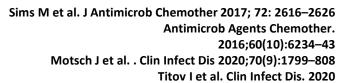
MK-7655A Protocol 003-004 (phase II)

Complicated UTIs

Complicated IAIs

Non inferiority vs IMI

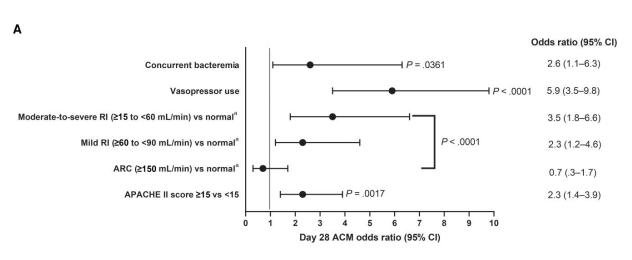
RESTORE-IMI 1 study

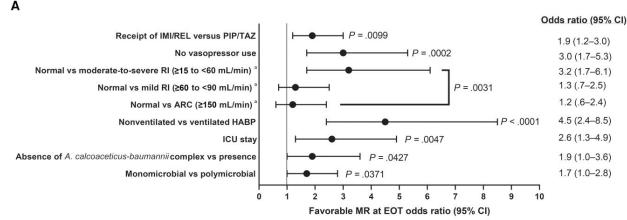

IMI-R bacterial infections

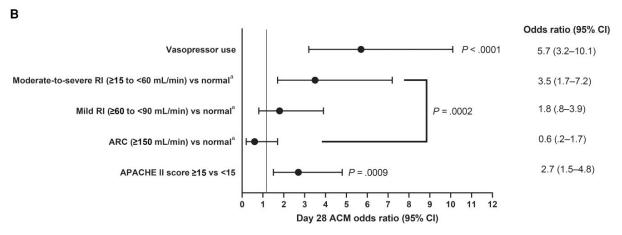
Non inferiority vs IMI+COL

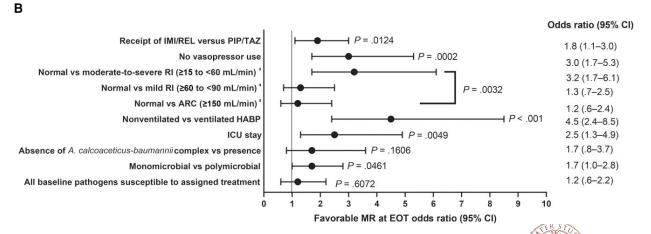
RESTORE-IMI 2 study

HAP including VAP

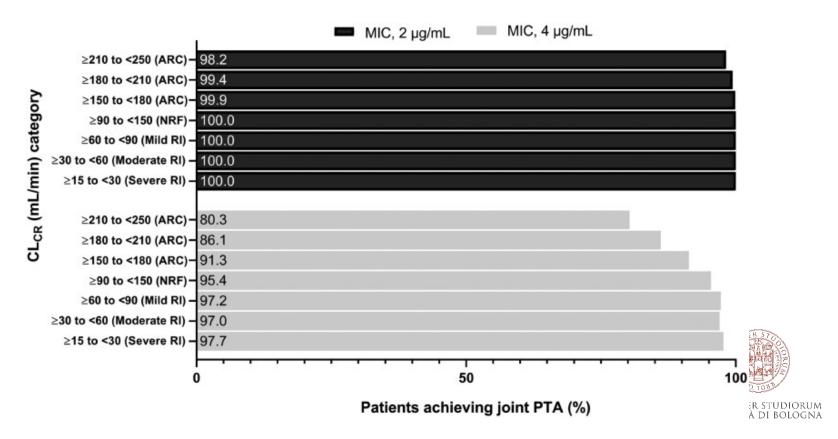

Non inferiority vs TZP






Participant- and Disease-Related Factors as Independent Predictors of Treatment Outcomes in the RESTORE-IMI 2 Clinical Trial: A Multivariable Regression Analysis

Martin-Loeches I et al. OFID 2023



Imipenem/cilastatin/relebactam efficacy, safety and probability of target attainment in adults with hospital-acquired or ventilator-associated bacterial pneumonia among patients with baseline renal impairment, normal renal function, and augmented renal clearance

Roberts JA et al. JAC AMR 2023

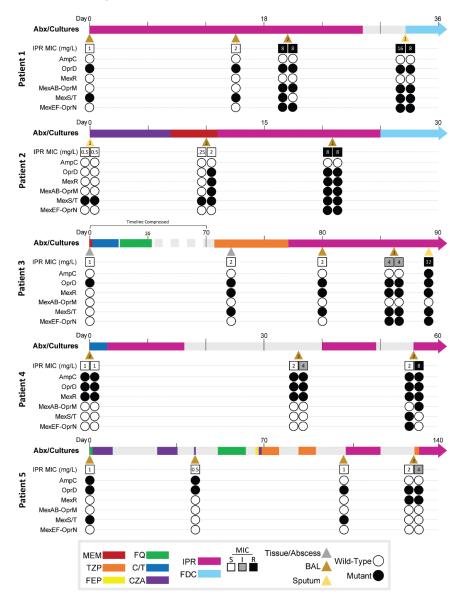
CL _{CR} (mL/min)	IMI/REL dosing, q6h			
≥15 to <30	0.5 g (200/200/100 mg)			
≥30 to <60	0.75 g (300/300/150 mg)			
≥60 to <90	1.0 g (400/400/200 mg)			
≥90	1.25 g (500/500/250 mg)			

• Targets for joint PTA evaluation were $40\% fT_{>MIC}$ for imipenem and fAUC/MIC = 8.0 for relebactam at steady state, which is associated with a 2-log kill in preclinical models

Early Multicenter Experience With Imipenem-Cilastatin-Relebactam for Multidrug-Resistant Gram-Negative Infections

Rebold N et al. Open Forum Infect Dis 2021;8:ofab554

- Twenty-one patients: median age 65 (IQR 48–75) years, 57% male
 - > median CCI 4.0 (IQR 2.5-6.0)
 - > 76% were admitted to ICU, median APACHE II 21.5 (13.0–28.0)
 - ➤ 67% received a renally adjusted dose of I-R due to AKI
- HAP and VAP (11/21, 52%), UTIs (3/21, 14%), and invasive prosthetic device (IPD) infections (3/21, 14%)
- Pseudomonas aeruginosa (16/21, 76%), Klebsiella pneumoniae (3/21, 14%), and Proteus mirabilis (3/21, 14%)
 - > 3/8 patients with Enterobacterales having a CRE infection
 - > nearly all (15/16, 94%) P. aeruginosa cases were MDR
- I-R was used for polymicrobial bacterial infection 29% of the time
- Only 52% of cases had I-R MICs performed primarily by Etest, MIC range of 0.125/4 to ≥32/4, where 8/11 or 73% were susceptible
- I-R was used as combination therapy 29% (tobramycin 67%)


Early Multicenter Experience With Imipenem-Cilastatin-Relebactam for Multidrug-Resistant Gram-Negative Infections

Rebold N et al. Open Forum Infect Dis 2021;8:ofab554

- 30-day mortality occurred in 7/21 (33%) patients
- 7-day clinical cure occurred in 13/21 (62%) patients
- Non-susceptibility to I-R developed on treatment in only 1 case (1/21, 5%)
- Microbiological recurrence occurred in 5/21 (24%) patients
 - ➤ In 2 subsequent isolates showed increased I-R MICs relative to the index cultures

Evolution of Imipenem-Relebactam Resistance Following Treatment of Multidrug-Resistant Pseudomonas aeruginosa Pneumonia

Shields R et al. Clin Infect Dis 2022;75:710-714

- 19 patients treated with imipenem-relebactam for MDR P. aeruginosa infections
- Imipenem-relebactam nonsusceptible isolates were recovered from 26% (5/19) patients with HAP/VAP
- All had failed prior antibiotic regimens, including 2 with treatment emergent resistance to ceftolozane-tazobactam
- No patient received concomitant intravenous antibiotics with imipenem-relebactam
- Imipenem-relebactam nonsusceptibility coincided with the emergence of mutations in efflux operons in all cases

Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and *Pseudomonas aeruginosa* with Difficult-to-Treat Resistance (DTR-P. aeruginosa)

Tamma P et al. Clin Infect Dis. 2022 Apr 19:ciac268

	UTI	cUTI	non-UTI	Notes
ESBL	Nitrofurantoin TMP-SMX	ERTA, MEM, IMP FQs, TMP-SMX	CARBAPENEM	If BL/BLI was initiated as empiric therapy for UTI with clinical improvement no change is necessary
CRE- KPC	FQs, TMP-SMX, single dose AG, HD MEM (or new drugs)	FQs, TMP-SMX, single dose AG, HD MEM (or new drugs)	CAZ-AVI, MEM-VAB, IMP-REL	
DTR P. aeruginosa	TOL/TZB, CAZ/AVI, IMP/REL, CFD	TOL/TZB, CAZ/AVI, IMP/REL, CFD	TOL/TZB, CAZ/AVI, IMP/REL	If strain is susceptible to multiple traditional beta- lactams or FQs carbapenem-sparing options are preferred

Conclusions

- Optimal place in therapy for IMI-REL should be defined
- Prompt availability of the phenotypic pattern of susceptibility to IMI-REL for both KPCproducing Enterobacterales and DTR-P. aeruginosa strains is pivotal
- Patient setting: KPC carrier at high risk for DTR P. aeruginosa infection
- Infection type: cIAI, polymicrobial HAP/VAP

