

# RUOLO DELLA PK/PD DEI NUOVI FARMACI ANTIBATTERICI NELLA REAL LIFE

### FEDERICO PEA

DIPARTIMENTO DI SCIENZE MEDICHE E CHIRURGICHE, ALMA MATER STUDIORUM, UNIVERSITA' DI BOLOGNA

SSD FARMACOLOGIA CLINICA, AZIENDA OSPEDALIERO UNIVERSITARIA DI BOLOGNA





ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

### DISCLOSURES OF INTEREST

• Speaker's bureau: Advanz Pharma, Angelini, BeiGene, Gilead, InfectoPharm,

Menarini, MSD, Pfizer, Shionogi

• Consultant: Advanz Pharma, Angelini, BeiGene, bioMerieux, Gilead, MSD, Pfizer,

Shionogi



# TEN GOLDEN RULES FOR OPTIMAL ANTIBIOTIC USE IN HOSPITAL SETTINGS: THE WARNING CALL TO ACTION

Worldwide Antimicrobial Resistance National/International Network Group (WARNING) Collaborators World J Emerg Surg 2023 Oct 16; 18(1):50. doi: 10.1186/s13017-023-00518-3

SELECTING THE MOST APPROPRIATE ANTIBIOTIC(S) FOR A SPECIFIC PATIENT





ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

> Antimicrob Agents Chemother. 2018 Apr 26;62(5):e02497-17. doi: 10.1128/AAC.02497-17. Print 2018 May.

# Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections

Ryan K Shields <sup>1 2</sup>, M Hong Nguyen <sup>3 2</sup>, Liang Chen <sup>4</sup>, Ellen G Press <sup>1</sup>, Barry N Kreiswirth <sup>4</sup>, Cornelius J Clancy <sup>1 2 5</sup>



#### DOSING ADJUSTMENTS OF NOVEL BL AND/OR BL/BLIS IN RENAL PATIENTS RETRIEVED FROM SUMMARY OF PRODUCT CHARACTERISTICS AND PIVOTAL TRIALS

| BL and/or BL/BLIs          | PK/PD target<br>adopted in<br>pivotal trials | Dosing adjustments in patients with<br>various classes of renal function (CLCr<br>in mL/min)                                                                                                                          |
|----------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cefiderocol                | 75% fT <sub>&gt;MIC</sub>                    | CLCr ≥ 120: 2 g every 6 h<br>CLCr 60–120: 2 g every 8 h<br>CLCr 30–59: 1.5 g every 8 h<br>CLCr 15–29: 1 g every 8 h<br>CLCr< 15/IHD: 0.75 g every 12 h                                                                |
| Ceftazidime-<br>Avibactam  | 50% fT <sub>&gt;MIC</sub>                    | CLCr> 50: 2.5 g every 8 h<br>CLCr 31–50: 1.25 g every 8 h<br>CLCr 16–30: 0.9375 g every 12 h<br>CLCr 6–15: 0.9375 g every 24 h                                                                                        |
| Ceftolozane-<br>Tazobactam | 30% fT <sub>&gt;MIC</sub>                    | CLCr ≤ 5/IHU: 0.9375 g every 48 h<br>CLCr> 50: 3.0*/1.5 g every 8 h<br>CLCr 30–50: 1.5*/0.75 g every 8 h<br>CLCr 15–29: 0.75*/0.375 g every 8 h<br>CLCr< 15/IHD: LD 1.5*/0.75 g → MD<br>0.26*/0.15 g $\rightarrow$ MD |
| lmipenem-<br>Relebactam    | 40% fT <sub>&gt;MIC</sub>                    | 0.30°70.15 g every 8 h<br>CLCr 90-150: 1.25 g every 6 h<br>CLCr 60-89: 1 g every 6 h<br>CLCr 30-59: 750 mg every 6 h<br>CLCr 15-29: 500 mg every 6 h<br>IHD: 500 mg every 6 h<br>CLCr < 15 and not IHD: should not be |
| Meropenem-<br>Vaborbactam  | 45% fT <sub>&gt;MIC</sub>                    | administered<br>sCLCr $\geq$ 40: 4 g every 8 h<br>CLCr 20-39: 2 g every 8 h<br>CLCr 10-19: 2 g every 12 h                                                                                                             |

\* The doubled dose is indicated for nosocomial pneumonia including ventilator-associated pneumonia

\*\* Dosing schedule predicted on the basis of the CL<sub>CRRT</sub> of cefepime, according to the principle of similar PK features shared by cefepime and cefiderocol in terms of molecular weight and protein binding ARC: augmented renal clearance; CVVH: continuous veno-venous haemofiltration; CVVHD: continuous veno-venous hemodialysis; CVVHDF: continuous veno-venous haemodiafiltration; CRRT: continuous renal replacement therapy; IHD: intermittent hemodialysis LD: loading dose; MD: maintenance dose; PK/PD: pharmacokinetic/pharmacodynamic.



Gatti M and Pea F. Expert Rev Clin Pharmacol 2021 May;14(5):583-599

### THE ANTIMICROBIAL THERAPY PUZZLE:

COULD PK/PD RELATIONSHIPS BE HELPFUL IN ADDRESSING THE ISSUE OF APPROPRIATE PNEUMONIA TREATMENT IN THE CRITICALLY ILL PATIENTS ? Pea F and Viale P. Clin Infect Dis 2006; 42: 1764-1771



#### HYDROPHILIC ANTIMICROBIALS

Overall, the lower ELF concentrations and ELFto-plasma ratios exhibited by the hydrophilic antimicrobials seem to support the hypothesis that dosages higher than needed for the treatment of bacteriemia should be advisable when treating pneumonia with these agents in pharmacodynamic order ensure optimal to exposure at the infection site.

#### 'PATIENT-CENTRED' APPROACH FOR DOSING ADJUSTMENT OF NOVEL ANTIBIOTICS IN CRITICALLY ILL PATIENTS DURING CONTINUOUS RENAL REPLACEMENT THERAPY





Gatti M and Pea F. Clin Pharmacokinet 2021 Oct; 60(10): 1271-1289

# RENAL DOSING OF ANTIBIOTICS: ARE WE JUMPING THE GUN?

Crass RL et al. Clin Infect Dis 2019 Apr; 68: 1596-1602

FRACTIONAL CHANGE IN SERUM CREATININE RELATIVE TO BASELINE THROUGH THE FIRST 4 DAYS OF ADMISSION (N = 18,650)



| • | Using a clinical database, we identify  |
|---|-----------------------------------------|
|   | AKI on admission in a substantial       |
|   | proportion of patients with pneumonia   |
|   | (27.1%), intra-abdominal (19.5%),       |
|   | urinary tract (20.0%), or skin and skin |
|   | structure infections (9.7%) that        |
|   | resolved by 48 hours in 57.2% of cases. |
|   | THER ST                                 |

# WEIGHING THE ODDS: NOVEL B-LACTAM/B-LACTAMASE INHIBITOR USE IN HOSPITAL-ACQUIRED AND VENTILATOR-ASSOCIATED P. aeruginosa PNEUMONIA FOR PATIENTS WHO ARE MORBIDLY OBESE

Kunz Coyne AJ et al. Open Forum Infect Dis 2023 Aug 28; 10(9): ofad454

PATIENTS CHARACTERISTICS AND TREATMENT

- 285 patients with HABP (61.4%) and/or VABP (56.1%) were enrolled (morbidly obese, n = 95; non-morbidly obese, n = 190)
- Ceftolozane/tazobactam 170 (59.6%), Ceftazidime/avibactam 73 (25.6%), Meropenem/vaborbactam 42 (14.7%)

MULTIVARIABLE LOGISTIC REGRESSION MODEL OF PREDICTORS FOR PRESUMED TREATMENT FAILURE

| Predictor <sup>a</sup>                                               | aOR  | 95% CI    |
|----------------------------------------------------------------------|------|-----------|
| Morbid obesity (BMI ≥35 mg/kg²)                                      | 1.06 | 1.02–1.79 |
| Time to BL/BLI therapy                                               | 1.47 | 1.28–2.66 |
| Renal dose-adjusted BL/BLI in the first 48 h of therapy <sup>b</sup> | 1.12 | 1.09–1.75 |
| CRRT during BL/BLI therapy                                           | 1.35 | 1.06-1.49 |
| Concomitant antipseudomonal therapy <sup>c</sup>                     | 0.78 | .22–1.68  |



Hefny F et al. Pharmaceutics 2022; 14: 445

FLOW CHART OF THE STUDY SEARCH AND SCREENING





Hefny F et al. Pharmaceutics 2022; 14: 445

FOREST PLOT OF THE PREVALENCE OF ARC IN MIXED ICU POPULATION (N = 29)

| Author (Year)                                                    | Method     | ARC  | Ν      |                                | Proportion    | 95% CI       | Weight |
|------------------------------------------------------------------|------------|------|--------|--------------------------------|---------------|--------------|--------|
| Fuster-Lluch et al. (2008)                                       | С          | 16   | 89     | - <b></b>                      | 0.18          | [0.11: 0.28] | 3.3%   |
| Baptista et al. Portugal (2011)                                  | m          | 43   | 120    | - <u>+</u> -                   | 0.36          | [0.27; 0.45] | 3.7%   |
| Baptistaet al. Australia (2011)                                  | m          | 43   | 89     |                                | 0.48          | [0.38; 0.59] | 3.6%   |
| Grootaert et al. (2012)                                          | m          | 390  | 1317   | +                              | 0.30          | [0.27: 0.32] | 4.0%   |
| Carlier et al. (2013)                                            | m          | 19   | 61     |                                | 0.31          | [0.20; 0.44] | 3.3%   |
| Minkute et al. (2013)                                            | С          | 18   | 36     |                                | 0.50          | [0.33; 0.67] | 3.1%   |
| Udy et al. (2013)                                                | m          | 59   | 110    | — · —                          | 0.54          | [0.44; 0.63] | 3.7%   |
| Claus et al. (2013)                                              | m          | 66   | 128    |                                | 0.52          | [0.43; 0.60] | 3.7%   |
| Baptista et al. (2014)                                           | m          | 30   | 54     |                                | 0.56          | [0.41; 0.69] | 3.3%   |
| Campassi et al. (2014)                                           | m          | 103  | 363    |                                | 0.28          | [0.24; 0.33] | 3.9%   |
| Udy et al. Multicenter (2014)                                    | m          | 183  | 281    |                                | 0.65          | [0.59; 0.71] | 3.9%   |
| Adnan et al. (2014)                                              | m          | 19   | 49     |                                | 0.39          | [0.25; 0.54] | 3.2%   |
| Ruiz et al. (2015)                                               | m          | 120  | 360    | -                              | 0.33          | [0.28; 0.38] | 3.9%   |
| De Waele et al. (2015)                                           | m          | 604  | 1081   | -                              | 0.56          | [0.53; 0.59] | 4.0%   |
| Kawano et al. (2016)                                             | m          | 43   | 111    |                                | 0.39          | [0.30; 0.48] | 3.6%   |
| Abdel El Naeem et al. (2016)                                     | m          | 20   | 50     |                                | 0.40          | [0.26; 0.55] | 3.3%   |
| Hirai et al. (2016)                                              | С          | 48   | 292    | -                              | 0.16          | [0.12; 0.21] | 3.8%   |
| Ehmann et al. (2017)                                             | С          | 5    | 48     |                                | 0.10          | [0.03; 0.23] | 2.5%   |
| Tsai et al. (2018)                                               | m          | 31   | 97     |                                | 0.32          | [0.23; 0.42] | 3.5%   |
| Wong et al. (2018)                                               | С          | 192  | 330    |                                | 0.58          | [0.53; 0.64] | 3.9%   |
| Ollivier et al (2019)                                            | m          | 18   | 21     | <b>H</b>                       | - 0.86        | [0.64; 0.97] | 1.9%   |
| Wu et al. (2019)                                                 | m          | 46   | 100    |                                | 0.46          | [0.36; 0.56] | 3.6%   |
| Aitullina et al. (2019)                                          | С          | 16   | 97     |                                | 0.16          | [0.10; 0.25] | 3.3%   |
| Helset et al. (2020)                                             | m          | 21   | 83     |                                | 0.25          | [0.16; 0.36] | 3.4%   |
| Gijsen et al. (2020)                                             | m          | 1501 | 4267   | +                              | 0.35          | [0.34; 0.37] | 4.0%   |
| Barrasa et al. (2020)                                            | m          | 4    | 17     |                                | 0.24          | [0.07; 0.50] | 2.1%   |
| Aréchiga-Alvarado et al. (2020)                                  | С          | 32   | 63     |                                | 0.51          | [0.38; 0.64] | 3.4%   |
| Baptista et al. (2020)                                           | m          | 113  | 454    |                                | 0.25          | [0.21; 0.29] | 3.9%   |
| Nei et al. (2020)                                                | С          | 15   | 368    | +                              | 0.04          | [0.02; 0.07] | 3.4%   |
| Random effects model<br>Heterogeneity: $I^2 = 96\% r^2 = 0.24\%$ | 50 n < 0.0 | 1    |        |                                | 0.36          | [0.31; 0.41] | 100.0% |
| Heterogeneity. 7 = 3070, t = 0.340                               | , p = 0.0  |      |        | 02 04 06 08                    |               |              |        |
|                                                                  |            | ARC  | Preval | ence in Mixed ICU [Measured/Ca | culated Crcl] |              |        |



Hefny F et al. Pharmaceutics 2022; 14: 445

FOREST PLOT OF THE PREVALENCE OF ARC IN NEURO ICU POPULATION (N = 9) Author (Year) Method ARC N 95% CI Weight Proportion Dias et al. (2015) 16 18 0.89 [0.65; 0.99] 10.0% C 1.00 [0.83; 1.00] May et al. (2015) m 20 20 5.5% Udy et al. TBI (2017) 1.00 [0.72; 1.00] 11 11 5.4% m Carrie et al. TBI (2018) 163 223 0.73 [0.67: 0.79] 14.3% m Morbitzer et al. aSAH (2019) 47 50 0.94 [0.83; 0.99] 11.3% m Morbitzer et al. ICH (2019) m 15 30 0.50 [0.31; 0.69] 13.1% 32 60 Lannou et al. (2020) 0.53 [0.40; 0.66] 13.8% m Lannou et al. Editorial Letter (2020) m 0.77 [0.58; 0.90] 12.6% 23 30 Chen et al. (2020) C 26 104 ----0.25 [0.17; 0.34] 14.0% Random effects model 0.74 [0.55; 0.87] 100.0% Heterogeneity:  $I^2 = 92\%$ ,  $\tau^2 = 1.2388$ , p < 0.010.2 0.4 0.6 0.8 1 ARC Prevalence in Neuro ICU

#### FOREST PLOT OF THE PREVALENCE OF ARC IN TRAUMA ICU POPULATION (N = 9)

| Author (Year)                                                  | Method | ARC | Ν   | F                            | Proportion | 95% CI       | Weight |
|----------------------------------------------------------------|--------|-----|-----|------------------------------|------------|--------------|--------|
| Minville et al. PolyTrauma (2011)                              | m      | 79  | 144 |                              | 0.55       | [0.46; 0.63] | 12.3%  |
| Minville et al. Non-PolyTrauma (2011)                          | m      | 27  | 140 |                              | 0.19       | [0.13; 0.27] | 11.7%  |
| Udy et al. Trauma (2013)                                       | m      | 24  | 28  |                              | 0.86       | [0.67; 0.96] | 7.0%   |
| Saour et al. (2016)                                            | С      | 475 | 775 | · · · ·                      | 0.61       | [0.58; 0.65] | 13.1%  |
| Barletta et al. (2016)                                         | m      | 45  | 65  | · · ·                        | 0.69       | [0.57; 0.80] | 10.9%  |
| Barletta et al. ARCTIC (2017)                                  | m      | 89  | 133 | · · · · ·                    | 0.67       | [0.58; 0.75] | 12.1%  |
| Carrie et al. RVI (2018)                                       | m      | 20  | 30  |                              | 0.67       | [0.47; 0.83] | 9.1%   |
| Villanueva et al. (2019)                                       | С      | 35  | 70  |                              | 0.50       | [0.38; 0.62] | 11.3%  |
| Mulder et al. (2019)                                           | m      | 118 | 207 |                              | 0.57       | [0.50; 0.64] | 12.6%  |
| Random effects model                                           |        |     |     |                              | 0.58       | [0.48; 0.67] | 100.0% |
| Heterogeneity: $I^2 = 91\%$ , $\tau^2 = 0.3185$ , $p < 0.3185$ | 0.01   |     |     |                              |            |              |        |
|                                                                |        |     |     | 0.2 0.4 0.6 0.8              |            |              |        |
|                                                                |        |     |     | ARC Prevalence in Trauma ICU |            |              |        |



Hefny F et al. Pharmaceutics 2022; 14: 445

FOREST PLOT OF THE PREVALENCE OF ARC IN SEPSIS ICU POPULATION (N = 14)



#### FOREST PLOT OF THE PREVALENCE OF ARC IN OTHER POPULATIONS (N = 15)

| Author (Year)                                                | Method | ARC | Ν   |                         | Proportion | 95% CI       | Weight |
|--------------------------------------------------------------|--------|-----|-----|-------------------------|------------|--------------|--------|
| Steinke et al. (2015)                                        | m      | 16  | 100 |                         | 0.16       | [0.09; 0.25] | 6.4%   |
| Declercg et al. Trauma Surgery (2016)                        | m      | 45  | 129 | ÷                       | 0.35       | [0.27; 0.44] | 6.9%   |
| Declercq et al. Abdominal Surgery (2016)                     | m      | 31  | 103 |                         | 0.30       | [0.21; 0.40] | 6.7%   |
| Declercq et al. (2018)                                       | m      | 76  | 232 |                         | 0.33       | [0.27; 0.39] | 7.0%   |
| Dhaese et al. (2018)                                         | m      | 35  | 110 |                         | 0.32       | [0.23; 0.41] | 6.8%   |
| Ishii et al. (2018)                                          | C      | 46  | 177 |                         | 0.26       | [0.20; 0.33] | 6.9%   |
| Weber et al. (2019)                                          | m      | 9   | 24  |                         | 0.38       | [0.19; 0.59] | 5.5%   |
| Izumisawa et al. Hematomalignancy (2019)                     | C      | 22  | 261 | -                       | 0.08       | [0.05: 0.12] | 6.7%   |
| Izumisawa et al. Non Malignancy (2019)                       | С      | 29  | 261 |                         | 0.11       | [0.08; 0.16] | 6.8%   |
| Chu et al. (2019)                                            | С      | 186 | 315 | - 18                    | - 0.59     | [0.53, 0.65] | 7.1%   |
| Bricheux et al. (2019)                                       | C      | 80  | 300 |                         | 0.27       | [0.22; 0.32] | 7.1%   |
| Carrie et al. Amikacin (2020)                                | C      | 14  | 70  |                         | 0.20       | [0.11; 0.31] | 6.2%   |
| Saito et al. (2020)                                          | C      | 55  | 133 | <u> </u>                | 0.41       | [0.33; 0.50] | 6.9%   |
| Cojutti et al. (2020)                                        | C      | 27  | 75  |                         | 0.36       | [0.25: 0.48] | 6.6%   |
| Brown et al. (2020)                                          | m      | 22  | 85  | -                       | 0.26       | [0.17; 0.37] | 6.5%   |
| Random effects model                                         |        |     |     | -                       | 0.27       | [0.20; 0.36] | 100.0% |
| Heterogeneity: $I^2 = 94\%$ , $\tau^2 = 0.5326$ , $p < 0.01$ |        |     |     |                         |            |              |        |
| 400                                                          | Desite |     |     | 0.1 0.2 0.3 0.4 0.5 0.6 |            |              |        |



#### ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Hefny F et al. Pharmaceutics 2022; 14: 445

CONCLUSION

- ARC is a prevalent phenomenon in critically ill patients especially neurocritical care and trauma ICU population
- Young age, male sex, and trauma are risk factors for ARC in those with apparently normal renal function
- The estimation of CrCl using mathematical estimates of GFR grossly underestimates the prevalence of ARC in the critical care setting
- therefore measured CrCl through urine collections is prudent



'PARADIGM SHIFT IN THE CONCEPT OF DESIRED PK/PD TARGET ATTAINMENT WITH BETA-LACTAMS



Gatti M and Pea F. Expert Rev Anti Infect Ther 2023 Jan 31: 1-18



'PARADIGM SHIFT IN THE CONCEPT OF DESIRED PK/PD TARGET ATTAINMENT WITH BETA-LACTAMS



Gatti M and Pea F. Expert Rev Anti Infect Ther 2023 Jan 31: 1-18



#### RATIONALE FOR ADMINISTERING NOVEL BETA-LACTAMS BY PROLONGED INFUSION IN CHALLENGING CLINICAL SCENARIOS



Gatti M and Pea F. Curr Opin Infect Dis. 2021 Dec; 34(6): 737-747

# A DESCRIPTIVE CASE SERIES OF PK/PD TARGET ATTAINMENT AND MICROBIOLOGICAL OUTCOME IN CRITICALLY ILL PATIENTS WITH DOCUMENTED SEVERE XDR Acinetobacter baumannii BSI AND/OR VAP TREATED WITH CEFIDEROCOL

Gatti M, Bartoletti M, Cojutti PG, Gaibani P, Conti M, Giannella M, Viale P, Pea F

J Glob Antimicrob Resist 2021 Dec; 27: 294-29

DEMOGRAPHIC AND CLINICAL FEATURES OF CRITICALLY ILL PATIENTS AFFECTED BY XDR Acinetobacter baumannii INFECTIONS RECEIVING CEFIDEROCOL

| _ | ~   | -       |                             |                                                 | -                         |                                             |                                     |                                |              | ~      |                        |                          |
|---|-----|---------|-----------------------------|-------------------------------------------------|---------------------------|---------------------------------------------|-------------------------------------|--------------------------------|--------------|--------|------------------------|--------------------------|
| - | ID  | Age/sex | BMI<br>(kg/m <sup>2</sup> ) | Type of infection<br>(bacterial load in<br>BAL) | Cefiderocol<br>MIC (mg/L) | Cefiderocol<br>dosage (infused<br>over 3 h) | fC <sub>min</sub> /MIC <sup>a</sup> | Antibiotic<br>co-<br>treatment | CRRT/ECMO    | ME BSI | ME VAP                 | 30-day<br>mortal-<br>ity |
|   | #1  | 55/F    | 27.1                        | $BSI + VAP (> 10^6)$                            | 0.5                       | 1.5 g q8h                                   | 26.71                               | No                             | ЕСМО         | Yes    | No $(>10^6)$           | No                       |
|   | #2  | 57/M    | 24.5                        | BSI                                             | 0.5                       | 2 g q8h                                     | 3.11                                | No                             | ECMO         | Yes    | NA                     | Yes                      |
|   | #3  | 15/M    | 27.8                        | VAP (> $10^{6}$ )                               | 1                         | 2 g q8h                                     | 6.89                                | No                             |              | NA     | No (>10 <sup>6</sup> ) | No                       |
|   |     |         |                             |                                                 |                           |                                             |                                     |                                | ECMO + CVVHI | )F     |                        |                          |
|   | #4  | 75/F    | 32.7                        | $BSI + VAP (> 10^6)$                            | 0.5                       | 2 g q8h                                     | 5.38                                |                                | CVVHDF       | Yes    | Yes                    | Yes                      |
|   |     |         |                             |                                                 |                           |                                             |                                     | Colistin + SA                  | М            |        |                        |                          |
|   | #5  | 54/M    | 31.6                        | $BSI + VAP (> 10^5)$                            | 1                         | 2 g q8h                                     | 0.59                                | Fosfomycin                     | No           | No     | No (>10 <sup>6</sup> ) | No                       |
|   | #6  | 67/F    | 31.3                        | $BSI + VAP (10^{6})$                            | 1                         | 2 g q8h                                     | 2.94                                | No                             | No           | Yes    | No (10 <sup>6</sup> )  | No                       |
|   | #7  | 65/M    | 29.4                        | BSI                                             | 0.5                       | 2 g q8h                                     | 1.09                                | SAM                            | No           | Yes    | NA                     | Yes                      |
|   | #8  | 49/M    | 37.6                        | VAP (> $10^{6}$ )                               | 1                         | 2 g q8h                                     | 2.39                                | No                             | ECMO         | NA     | No (>10 <sup>5</sup> ) | No                       |
|   | #9  | 76/M    | 29.4                        | VAP (10 <sup>4</sup> )                          | 1                         | 2 g q8h                                     | 0.67                                | No                             | No           | NA     | No (>10 <sup>6</sup> ) | No                       |
|   | #10 | 77/M    | 23.0                        | VAP (> $10^{6}$ )                               | 1                         | 1.5 g q8h                                   | 2.35                                | No                             | No           | NA     | Yes                    | No                       |
|   | #11 | 68/F    | 27.1                        | $BSI + VAP (10^5)$                              | 1                         | 2 g q8h                                     | 0.63                                | No                             | No           | Yes    | No (10 <sup>5</sup> )  | No                       |
|   | #12 | 72/F    | 56.9                        | $BSI + VAP (10^6)$                              | 0.5                       | 2 g q8h                                     | 28.39                               | No                             | No           | Yes    | Yes                    | No                       |
|   | #13 | 78/M    | 27.8                        | VAP (10 <sup>5</sup> )                          | 1                         | 2 g q8h                                     | 6.47                                | No                             | No           | NA     | Yes                    | Yes                      |
|   |     |         |                             |                                                 |                           |                                             |                                     |                                |              |        |                        |                          |



# A DESCRIPTIVE CASE SERIES OF PK/PD TARGET ATTAINMENT AND MICROBIOLOGICAL OUTCOME IN CRITICALLY ILL PATIENTS WITH DOCUMENTED SEVERE XDR Acinetobacter baumannii BSI AND/OR VAP TREATED WITH CEFIDEROCOL

Gatti M, Bartoletti M, Cojutti PG, Gaibani P, Conti M, Giannella M, Viale P, Pea F J Glob Antimicrob Resist 2021 Oct 25:52213-7165(21)00229-0

DESCRIPTION OF PK/PD CEFIDEROCOL TARGET ATTAINMENT (EXPRESSED AS FCMIN/MIC RATIO) ANDMICROBIOLOGICAL OUTCOME





ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

# COMPARISON OF CEFTOLOZANE/TAZOBACTAM INFUSION REGIMENS IN A HOLLOW-FIBER INFECTION MODEL AGAINST XDR P. aeruginosa ISOLATES

Montero MM et al. *Microbiol Spectr* 2022 Jun 29; 10(3):e0089222. doi: 10.1128/spectrum.00892-22

OBSERVED VERSUS PREDICTED ANTIBIOTIC CONCENTRATIONS ACHIEVED IN EACH HFIM MODEL

|                            | Free peak concn (mg/L | .) ± SD          | Free trough concn (mg/L)/Css ± SD |                |  |
|----------------------------|-----------------------|------------------|-----------------------------------|----------------|--|
| Dosing regimen             | Predicted value       | Observed value   | Predicted value                   | Observed value |  |
| C/T 2/1 g q8h 1-h infusion | 74.45                 | $61.96 \pm 6.80$ | 14.77                             | 25.67 ± 3.7    |  |
| C/T 2/1 g q8h 4-h infusion | 54.55                 | 53.10 ± 7.92     | 19.7                              | 27.29 ± 5.63   |  |
| C/T 6 g q24h Cl            |                       |                  | 45                                | 47.29 ± 5.43   |  |



# COMPARISON OF CEFTOLOZANE/TAZOBACTAM INFUSION REGIMENS IN A HOLLOW-FIBER INFECTION MODEL AGAINST XDR P. aeruginosa ISOLATES

Montero MM et al. *Microbiol Spectr* 2022 Jun 29; 10(3):e0089222. doi: 10.1128/spectrum.00892-22

| MEAN OVERALL REDUCTION IN NUMB                           | REGIMENS                    |                          |                  |             |                  |             |
|----------------------------------------------------------|-----------------------------|--------------------------|------------------|-------------|------------------|-------------|
|                                                          | <b>C/T (MIC =</b> 2         | 2 mg/L)                  | C/T (MIC = 8 mg. | /L)         | C/T (MIC = 16    | mg/L)       |
|                                                          | P. aeruginosa (1            | 0-023)                   | P. aeruginosa (  | 09-012)     | P. aeruginosa    | (07-016)    |
| Infusion regimen                                         | Log diff day 7 <sup>a</sup> | LR of AUCFU <sup>b</sup> | Log diff day 7   | LR of AUCFU | Log diff day 7   | LR of AUCFU |
| C/T 2/1 g q8h 1-h infusion vs control                    | $-2.26 \pm 0.19$            | -3.37                    | $-2.53\pm0.04$   | -3.66       | $-0.83\pm0.22$   | -2.90       |
| C/T 2/1 g q8h 4-h infusion vs control                    | $-3.47 \pm 0.10$            | -3.38                    | $-3.19 \pm 0.37$ | -3.64       | $-1.7 \pm 0.33$  | -3.15       |
| C/T 6 g q24h Cl Css45 vs control                         | $-4.46\pm0.05$              | -3.53                    | $-5.45 \pm 0.18$ | 3.69        | $-4.94 \pm 0.37$ | -3.24       |
| C/T 6 g q24h Cl Css45 vs C/T 2/1 g q8h 1-h infusion      | $-2.2 \pm 0.1$              | -1.01                    | $-2.92\pm0.01$   | -1.52       | $-4.11 \pm 0.12$ | -2.1        |
| C/T 6 g q24h Cl Css45 vs C/T 2/1 g q8h 4-h infusion      | $-0.99\pm0.33$              | -0.65                    | $-2.26 \pm 0.2$  | -1.23       | $-3.24 \pm 0.05$ | -1.85       |
| C/T 2/1 g q8h 4-h infusion vs C/T 2/1 g q8h 1-h infusion | $-1.21 \pm 0.05$            | -0.87                    | $-0.66 \pm 0.15$ | -0.10       | $-0.87\pm0.28$   | -0.15       |

<sup>*a*</sup>Log difference at the end of the assay for each regimen compared with the control.

<sup>b</sup>The log difference is presented as the log ratio (LR), which is used to compare any number of log<sub>10</sub> CFU of two regimens (test/reference). AUCFU, area under the curve for CFU; C/T, ceftolozane-tazobactam; CI, continuous infusion; Css, steady-state concentration; q8h, every 8 h.

### Css =47.29 ± 5.43 mg/L



### COMPARISON OF CEFTOLOZANE/TAZOBACTAM INFUSION REGIMENS IN A HOLLOW-FIBER INFECTION MODEL AGAINST XDR P. aeruginosa ISOLATES Montero MM et al. Microbiol Spectr 2022 Jun 29; 10(3):e0089222. doi: 10.1128/spectrum.00892-22

#### IMPORTANCE

- Given its time-dependent behavior, C/T continuous infusion can improve exposure and therefore the pharmacokinetic/pharmacodynamic target attainment
- We demonstrated that C/T in continuous infusion achieved the largest reduction in bacterial density in the overall treatment arms for both susceptible and resistant isolates
- It was also the only regimen with bactericidal activity against all three isolates
- Through this study, we want to demonstrate that developing individually tailored antimicrobial treatments is becoming essential
- Our results support the role of C/T level monitoring and of dose adjustments for better clinical management and outcomes







#### DEMOGRAPHICS AND CLINICAL CHARACTERISTICS OF PATIENTS TREATED WITH CI CEFTAZIDIME-AVIBACTAM TARGETED THERAPY

Microbiological eradication

**Resistance** development

30-day mortality rate

Clinical cure

| Variables                                                 | Overall included          | Variables                                                       | Overall included          |
|-----------------------------------------------------------|---------------------------|-----------------------------------------------------------------|---------------------------|
|                                                           | patients ( <i>n</i> = 58) |                                                                 | patients ( <i>n</i> = 58) |
| Demographics                                              |                           | BSI                                                             | 24 (41.4)                 |
| Age (median [IQR])                                        | 62.5 (55.5–73.8)          | HAP/VAP                                                         | 11 (19.0)                 |
| Gender (male/female; n [%])                               | 36/22 (62.1/37.9)         | HAP/VAP + BSI                                                   | 10 (17.2)                 |
| Body mass index (median [IQR])                            | 24.7 (22.2–28.4)          | IAI + BSI                                                       | 7 (12.1)                  |
| Baseline eGFR (mL/min/1.73 m <sup>2</sup> ; median [IQR]) | 86.5 (41.3–109.8)         | IAI                                                             | 3 (5.2)                   |
| ICU admission ( <i>n</i> [%])                             | 31 (53.4)                 | SSTI                                                            | 1 (1.7)                   |
| Augmented renal clearance ( <i>n</i> [%])                 | 6 (10.3)                  | CNS                                                             | 1 (1.7)                   |
| Continuous renal replacement therapy (n [%])              | 15 (25.9)                 | CNS + BSI                                                       | 1 (1.7)                   |
| Immunosuppression (n [%])                                 | 16 (27.6)                 | CAZ-AVI treatment                                               |                           |
| Underlying disease (n [%])                                |                           | Initial full maintenance dosing ( <i>n</i> [%])                 | 54 (93.1)                 |
| Severe COVID-19                                           | 8 (13.8)                  | Length of treatment (days; median [IQR])                        | 13.5 (7.75–19)            |
| Febrile neutropenia                                       | 8 (13.8)                  | Combination therapy                                             | 22 (37.9)                 |
| Hepatic cirrhosis                                         | 8 (13.8)                  | Ceftazidime fC <sub>ss</sub> /MIC ratio (median [IQR])          | 23.5 (13.4–39.1)          |
| Solid organ transplantation                               | 8 (13.8)                  | Avibactam fC <sub>ss</sub> /C <sub>T</sub> ratio (median [IQR]) | 3.5 (2.2–6.2)             |
| Bowel perforation                                         | 6 (10.3)                  | PK/PD joint target attainment (n [%])                           |                           |
| Acute cholecystitis                                       | 4 (6.9)                   | Optimal                                                         | 53 (91.4)                 |
| Cancer                                                    | 3 (5.2)                   | Quasi-optimal                                                   | 4 (6.9)                   |
| Other                                                     | 13 (22.4)                 | Suboptimal                                                      | 1 (1.7)                   |
|                                                           |                           | Outcome                                                         |                           |



53 (91.4)

46 (79.3)

15 (25.9)

2 (3.4)

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

JOINT PK/PD TARGETS OF CAZ-AVI

 $CAZ \rightarrow Css/MIC 4 - 8$ 

 $AVI \rightarrow Css/C_T > 1$ 

OPTIMAL: 2/2

QUASI-OPTIMAL: 1/2

SUBOPTIMAL: 0/2



ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

#### UNIVARIATE ANALYSIS COMPARING PATIENTS RECEIVING MONO- VS COMBO-THERAPY WITH CI CAZ-AVI FOR TARGETED THERAPY OF DTR GRAM-NEGATIVE INFECTIONS

| Variables                                 | Monotherapy ( $n = 36$ ) | Combination therap | y (n = P value |
|-------------------------------------------|--------------------------|--------------------|----------------|
|                                           |                          | 22)                |                |
| Demographics                              |                          |                    |                |
| Age (median [IQR])                        | 62 (54.75–72.5)          | 63 (58.75–75.25)   | 0.39           |
| Gender (male/female; <i>n</i> [%])        | 20/16 (55.6/44.4)        | 16/6 (72.7/27.3)   | 0.19           |
| Body mass index (median [IQR]             | ) 23.9 (21.0–28.0)       | 26.3 (23.7–29.5)   | 0.12           |
| Baseline eGFR (mL/min/1.73 m <sup>2</sup> | ; 88.0 (46.0–110.0)      | 81.0 (32.7–103.0)  | 0.43           |
| median [IQR])                             |                          |                    |                |
| ICU admission ( <i>n</i> [%])             | 15 (41.7)                | 16 (72.7)          | 0.023          |
| Continuous renal replacement              | 8 (22.2)                 | 7 (31.8)           | 0.42           |
| therapy (n [%])                           |                          |                    |                |
| Augmented renal clearance ( <i>n</i> [    | %])5 (13.9)              | 1 (4.5)            | 0.39           |
| Site of infection (n [%])                 |                          |                    |                |
| BSI                                       | 18 (50.0)                | 6 (27.3)           | 0.09           |
| HAP/VAP                                   | 2 (5.6)                  | 9 (40.9)           | 0.001          |
| HAP/VAP + BSI                             | 7 (19.4)                 | 3 (13.7)           | 0.73           |
| IAI + BSI                                 | 7 (19.4)                 | 0 (0.0)            | 0.04           |
| IAI                                       | 1 (2.8)                  | 2 (9.1)            | 0.55           |
| SSTI                                      | 0 (0.0)                  | 1 (4.5)            | 0.38           |
| CNS + BSI                                 | 1 (2.8)                  | 0 (0.0)            | 0.99           |
| CNS                                       | 0 (0.0)                  | 1 (4.5)            | 0.38           |

| Resistance occurrence                                                                                                                                              | 1 (2.8)                                                                                                       | 1 (4.5)                                                                                                                                             | 0.99                                                                                                   | TER STIL      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|
| 30-day mortality rate                                                                                                                                              | 7 (19.4)                                                                                                      | 8 (36.4)                                                                                                                                            | 0.16                                                                                                   |               |
| <sup>e</sup> BSI, bloodstream infection; CAZ<br>producing Enterobacterales; eGFF<br>HAP, hospital-acquired pneumo<br>range; PK/PD, pharmacokinetic/p<br>pneumonia. | AVI, ceftazidime-avibact<br>8, estimated glomerular f<br>nia; IAI, intra-abdominal<br>harmacodynamic; SSTI, : | am; CNS, central nervous system;<br>filtration rate; ESBL, extended-spe<br>l infection; ICU, intensive care u<br>skin and soft tissue infection; VA | : CPE, carbapenemase-<br>ctrum beta-lactamase;<br>unit; IQR, interquartile<br>P, ventilator-associated | VW12 1.0.1088 |

#### ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

#### RELATIONSHIP BETWEEN PHARMACOKINETIC/PHARMACODYNAMIC JOINT TARGET ATTAINMENT AND THE MICROBIOLOGICAL OUTCOME



#### UNIVARIATE AND MULTIVARIATE ANALYSES COMPARING PATIENTS SHOWING MICROBIOLOGICAL ERADICATION VS MICROBIOLOGICAL FAILURE

| Variables                                                    | Microbiological             | Microbiological failure ( | n =Univariate analysis | Multivariate analysis | Multivariate            |
|--------------------------------------------------------------|-----------------------------|---------------------------|------------------------|-----------------------|-------------------------|
|                                                              | eradication ( $n = 53$ )    | 5)                        | P value                | (OR; 95% CI)          | analysis <i>P</i> value |
| Demographics                                                 |                             |                           |                        |                       |                         |
| Age (median [IQR])                                           | 63.0 (55.0-74.0)            | 60.0 (57.0-61.0)          | 0.26                   |                       |                         |
| Gender (male/female; n [%])                                  | 34/19 (64.2/35.8)           | 2/3 (40.0/60.0)           | 0.36                   |                       |                         |
| Body mass index (median [IQR])                               | 24.7 (22.2–28.6)            | 23.1 (20.8–27.5)          | 0.40                   |                       |                         |
| Baseline eGFR (mL/min/1.73 m <sup>2</sup> ;<br>median [IQR]) | 85.0 (38.9–107.0)           | 120.0 (84.5–124.0)        | 0.18                   |                       |                         |
| ICU admission (n [%])                                        | 28 (52.8)                   | 3 (60.0)                  | 0.99                   |                       |                         |
| Continuous renal replacement therapy ( <i>n</i> [%])         | 14 (26.4)                   | 1 (20.0)                  | 0.99                   |                       |                         |
| Augmented renal clearance ( <i>n</i> [%])                    | 4 (7.5)                     | 2 (40.0)                  | 0.08                   |                       | •                       |
| Site of infection (n [%])                                    |                             |                           |                        | Our find              | dings si                |
| BSI                                                          | 24 (45.3)                   | 0 (0.0)                   | 0.07                   | •                     |                         |
| HAP/VAP                                                      | 9 (17.0)                    | 2 (40.0)                  | 0.24                   | towart                |                         |
| HAP/VAP + BSI                                                | 9 (17.0)                    | 1 (20.0)                  | 0.99                   | largei                | ananm                   |
| IAI + BSI                                                    | 5 (9.4)                     | 2 (40.0)                  | 0.11                   |                       |                         |
| IAI                                                          | 3 (5.6)                     | 0 (0.0)                   | 0.99                   | monothe               | raby co                 |
| SSTI                                                         | 1 (1.9)                     | 0 (0.0)                   | 0.99                   |                       |                         |
| CNS + BSI                                                    | 1 (1.9)                     | 0 (0.0)                   | 0.99                   | - 11                  |                         |
| CNS                                                          | 1 (1.9)                     | 0 (0.0)                   | 0.99                   | allowing              | microdi                 |
| Pathogens (n [%])                                            |                             |                           |                        | •                     |                         |
| KPC-producing K. pneumoniae                                  | 16 (30.2)                   | 2 (40.0)                  | 0.64                   | treatme               | nt of D                 |
| DTR P. aeruginosa                                            | 13 (24.5)                   | 1 (20.0)                  | 0.99                   | neume                 |                         |
| OXA-48-producing K. pneumonia                                | e11 (20.7)                  | 1 (20.0)                  | 0.99                   |                       |                         |
| OXA-48-producing E. coli                                     | 4 (7.5)                     | 0 (0.0)                   | 0.99                   |                       |                         |
| Carbapenem-resistant K.                                      | 3 (5.7)                     | 1 (20.0)                  | 0.31                   |                       |                         |
| aerogenes (non-CPE)                                          |                             |                           |                        |                       |                         |
| Carbapenem-resistant K.                                      | 3 (5.7)                     | 0 (0.0)                   | 0.99                   |                       |                         |
| pneumoniae (non-CPE)                                         |                             |                           |                        |                       |                         |
| KPC/OXA-48-coproducing K.                                    | 2 (3.8)                     | 0 (0.0)                   | 0.99                   |                       |                         |
| pneumoniae                                                   |                             |                           |                        |                       |                         |
| AmpC-producing E. cloacae                                    | 1 (1.9)                     | 0 (0.0)                   | 0.99                   |                       |                         |
| CAZ-AVI treatment and PK/PD join                             | t target attainment (n [%]) |                           |                        |                       |                         |
| Quasi-optimal/suboptimal joint                               | 3 (5.7)                     | 2 (40.0)                  | 0.05                   | 11.11 (1.31–93.98)    | 0.027                   |
| PK/PD target attainment                                      |                             |                           |                        |                       |                         |
| Combination therapy                                          | 20 (37.7)                   | 2 (40.0)                  | 0.99                   |                       |                         |

Our findings suggest that optimizing joint PK/PD target attainment of CI ceftazidime-avibactam monotherapy could represent a way forward for allowing microbiological eradication in the targeted treatment of DTR Gram-negative infections



Der blischansen folgense einz Annander in der andere einzelten einzelten

# PK/PD ANALYSIS OF CONTINUOUS-INFUSION FOSFOMYCIN IN COMBINATION WITH EXTENDED-INFUSION CEFIDEROCOL OR CONTINUOUS-INFUSION CEFTAZIDIME-AVIBACTAM IN A CASE SERIES OF DTR-P. aeruginosa BSI AND/OR HAP

Gatti M, Giannella M, Rinaldi M, Gaibani P, Viale P, Pea F. Antibiotics (Basel) 2022 Dec; 11(12): 1739

#### DEMOGRAPHIC AND CLINICAL FEATURES OF PATIENTS WITH SEVERE INFECTIONS CAUSED BY DTR-PA TREATED WITH COMBINATION THERAPY INCLUDING FOSFOMYCIN PLUS NOVEL BETA-LACTAMS

| ID Cases | Age/Sex | Ward                       | Type of Infection | Fosfomycin MIC<br>(mg/L) | Fosfomycin<br>Dosage  | AUC/MIC Ratio<br>(mg/L·h) | Fosfomycin<br>Dosing<br>Adjustment | Beta-Lactam<br>Co-Treatment | Beta-Lactam<br>MIC<br>(mg/L) | Average fC <sub>SS</sub> /MIC Ratio or<br>fC <sub>min</sub> /MIC Ratio | Beta-Lactam<br>Dosing<br>Adjustment | Joint PK/PD<br>Target | Microbiological<br>Eradication | 30-Day Mortality |
|----------|---------|----------------------------|-------------------|--------------------------|-----------------------|---------------------------|------------------------------------|-----------------------------|------------------------------|------------------------------------------------------------------------|-------------------------------------|-----------------------|--------------------------------|------------------|
|          |         |                            |                   |                          |                       |                           | DTR Pseudon                        | 10nas aeruginosa            |                              |                                                                        |                                     |                       |                                |                  |
| #1       | 27/F    | Infectious disease<br>unit | НАР               | 64                       | 8 g LD<br>16 g/day CI | 92.0                      | No                                 | Cefiderocol<br>2 g q8h (EI) | 1                            | 19.7                                                                   | No                                  | Optimal               | Yes                            | No               |
| #2       | 61/F    | ICU                        | VAP               | 256                      | 8 g LD<br>16 g/day CI | 32.4                      | No                                 | CAZ-AVI<br>2.5 g q8h CI     | 8                            | 5.9<br>(avibactam <i>f</i> C <sub>ss</sub> 8.4 mg/L)                   | No                                  | Quasi-optimal         | No                             | Yes              |
| #3       | 75/M    | ICU                        | BSI + VAP         | 32                       | 8 g LD<br>16 g/day CI | 471.4                     | Reduction<br>(12 g/day CI)         | Cefiderocol<br>2 g q8h (EI) | 2                            | 23.2                                                                   | Reduction<br>1 g q8h (EI 3h)        | Optimal               | Yes                            | No               |
| #4       | 35/M    | Haematology +<br>ICU       | BSI               | 64                       | 8 g LD<br>24 g/day CI | 180.2                     | No                                 | Cefiderocol<br>2 g q6h (EI) | 8                            | 0.9                                                                    | Increase<br>2 g q6h CI              | Quasi-optimal         | Yes                            | No               |
| #5       | 69/M    | ICU                        | BSI + VAP         | 32                       | 8 g LD<br>16 g/day CI | 626.6                     | Reduction<br>(12 g/day CI)         | Cefiderocol<br>2 g q8h (EI) | 2                            | 6.3                                                                    | No                                  | Optimal               | Yes                            | No               |
| #6       | 79/M    | ICU                        | VAP               | 32                       | 8 g LD<br>16 g/day CI | 458.3                     | No                                 | CAZ-AVI<br>2.5 g q8h CI     | 8                            | $14.9$ (avibactam $fC_{SS}$ 27.6 mg/L)                                 | Reduction<br>1.25 g q8h CI          | Optimal               | Yes                            | Yes              |

AUC: area-under-the-curve; CAZ-AVI: ceftazidime-avibactam; CI: continuous infusion; C<sub>min</sub>: trough concentrations; C<sub>ss</sub>: steady-state concentration; EI: extended infusion; HAP: hospital-acquired pneumonia; ICU: intensive care unit; LD: loading dose; MIC: minimum inhibitory concentration; PK/PD: pharmacokinetic/pharmacodynamic; VAP: ventilator-associated pneumonia. Green box: achievement of optimal PK/PD targets (or microbiological eradication for microbiological outcome); yellow box: achievement of quasi-optimal PK/PD targets (or microbiological failure for microbiological outcome).



# PK/PD ANALYSIS OF CONTINUOUS-INFUSION FOSFOMYCIN IN COMBINATION WITH EXTENDED-INFUSION CEFIDEROCOL OR CONTINUOUS-INFUSION CEFTAZIDIME-AVIBACTAM IN A CASE SERIES OF DTR-P. aeruginosa BSI AND/OR HAP

Gatti M, Giannella M, Rinaldi M, Gaibani P, Viale P, Pea F. Antibiotics (Basel) 2022 Dec; 11(12): 1739

#### SUSCEPTIBILITY PROFILE OF EACH DTR-PA CLINICAL ISOLATE AND RATIONALES FOR SELECTING COMBINATION THERAPY

| ID Cases<br>(Combo) | Susceptibility Profile (MIC in mg/L)                                                                                       | Criteria for Combination Therapy                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1<br>CID + FOS     | AMI ≤ 8; CEP > 8; CTZ 16; <mark>CTV &gt; 8</mark> ; CTT ≤ 1;<br>CIP 1; IMI > 8; MER 32; PIT > 16; FOS 64; CID 1            | <ol> <li>Ceftolozane-tazobactam supply shortage</li> <li>Ceftazidime-avibactam resistance</li> <li>Potential synergism of combination therapy</li> <li>HAP</li> </ol> |
| #2<br>CTV + FOS     | AMI ≤ 8; CEP > 8; CTZ 1 <mark>6; CTV 8</mark> ; CTT ≤ 1; CIP 1;<br>IMI > 8; MER 32; PIT > 16; COL 2; FOS 256               | <ol> <li>Ceftolozane-tazobactam supply shortage</li> <li>Potential synergism of combination therapy<br/>according to in vitro evidence</li> <li>VAP</li> </ol>        |
| #3<br>CID + FOS     | AMI $\leq$ 8; CEP > 8; CTZ > 32; CTV > 8; CTT 4;<br>CIP 0.5; IMI > 8; MER 32; PIT > 16; COL 2;<br>FOS 32; CID 2            | <ol> <li>Ceftolozane-tazobactam supply shortage</li> <li>Ceftazidime-avibactam resistance</li> <li>Potential synergism of combination therapy</li> <li>VAP</li> </ol> |
| #4<br>CID + FOS     | AMI 16; CEP > 8; CTZ > 32; CTV > 8; CTT > 4;<br>CIP > 1; IMI > 8; MER 16; PIT > 16; COL 1;<br>FOS 64; CID 8                | <ol> <li>Ceftolozane-tazobactam resistance</li> <li>Ceftazidime-avibactam resistance</li> <li>Potential synergism of combination therapy</li> </ol>                   |
| #5<br>CID + FOS     | AMI 16; CEP > 8; CTZ > 32 <mark>; CTV &gt; 8;</mark> CTT ≤ 1;<br>CIP 1; IMI > 8; MER 32; PIT > 16; COL 1; FOS 32;<br>CID 2 | <ol> <li>Ceftolozane-tazobactam supply shortage</li> <li>Ceftazidime-avibactam resistance</li> <li>Potential synergism of combination therapy</li> <li>VAP</li> </ol> |
| #6<br>CTV + FOS     | AMI > 16; CEP > 8; CTZ > 32 <mark>; CTV 8; CTT &gt; 4</mark> ;<br>CIP > 1; IMI 8; MER 8; PIT > 16; FOS 32                  | <ol> <li>Ceftolozane-tazobactam resistance</li> <li>Potential synergism of combination therapy according to in vitro evidence</li> <li>VAP</li> </ol>                 |

AMI: amikacin; CEP; cefepime; CID: cefiderocol; CTZ; ceftazidime; CTV: ceftazidime-avibactam; CTT: ceftolozane-tazobactam; CIP: ciprofloxacin; FOS: fosfomycin; HAP: hospital-acquired pneumonia; IMI: imipenem; MER: meropenem; PIT: piperacillin-tazobactam; VAP: ventilator-acquired pneumonia.



# PK/PD ANALYSIS OF CONTINUOUS-INFUSION FOSFOMYCIN IN COMBINATION WITH EXTENDED-INFUSION CEFIDEROCOL OR CONTINUOUS-INFUSION CEFTAZIDIME-AVIBACTAM IN A CASE SERIES OF DTR-P. aeruginosa BSI AND/OR HAP

Gatti M, Giannella M, Rinaldi M, Gaibani P, Viale P, Pea F. Antibiotics (Basel) 2022 Dec; 11(12): 1739

#### DEMOGRAPHIC AND CLINICAL FEATURES OF PATIENTS WITH SEVERE INFECTIONS CAUSED BY DTR-PA TREATED WITH COMBINATION THERAPY INCLUDING FOSFOMYCIN PLUS NOVEL BETA-LACTAMS

| ID Cases | Age/Sex | Ward                       | Type of Infection | Fosfomycin MIC<br>(mg/L) | Fosfomycin<br>Dosage  | AUC/MIC Ratio<br>(mg/L·h) | Fosfomycin<br>Dosing<br>Adjustment | Beta-Lactam<br>Co-Treatment | Beta-Lactam<br>MIC<br>(mg/L) | Average fC <sub>SS</sub> /MIC Ratio or<br>fC <sub>min</sub> /MIC Ratio | Beta-Lactam<br>Dosing<br>Adjustment | Joint PK/PD<br>Target | Microbiological<br>Eradication | 30-Day Mortality |
|----------|---------|----------------------------|-------------------|--------------------------|-----------------------|---------------------------|------------------------------------|-----------------------------|------------------------------|------------------------------------------------------------------------|-------------------------------------|-----------------------|--------------------------------|------------------|
|          |         |                            |                   |                          |                       |                           | DTR Pseudor                        | nonas aeruginosa            |                              |                                                                        |                                     |                       |                                |                  |
| #1       | 27/F    | Infectious disease<br>unit | HAP               | 64                       | 8 g LD<br>16 g/day CI | 92.0                      | No                                 | Cefiderocol<br>2 g q8h (EI) | 1                            | 19.7                                                                   | No                                  | Optimal               | Yes                            | No               |
| #2       | 61/F    | ICU                        | VAP               | 256                      | 8 g LD<br>16 g/day CI | 32.4                      | No                                 | CAZ-AVI<br>2.5 g q8h CI     | 8                            | 5.9<br>(avibactam <i>f</i> C <sub>ss</sub> 8.4 mg/L)                   | No                                  | Quasi-optimal         | No                             | Yes              |
| #3       | 75/M    | ICU                        | BSI + VAP         | 32                       | 8 g LD<br>16 g/day CI | 471.4                     | Reduction<br>(12 g/day CI)         | Cefiderocol<br>2 g q8h (EI) | 2                            | 23.2                                                                   | Reduction<br>1 g q8h (EI 3h)        | Optimal               | Yes                            | No               |
| #4       | 35/M    | Haematology +<br>ICU       | BSI               | 64                       | 8 g LD<br>24 g/day CI | 180.2                     | No                                 | Cefiderocol<br>2 g q6h (EI) | 8                            | 0.9                                                                    | Increase<br>2 g q6h CI              | Quasi-optimal         | Yes                            | No               |
| #5       | 69/M    | ICU                        | BSI + VAP         | 32                       | 8 g LD<br>16 g/day CI | 626.6                     | Reduction<br>(12 g/day CI)         | Cefiderocol<br>2 g q8h (EI) | 2                            | 6.3                                                                    | No                                  | Optimal               | Yes                            | No               |
| #6       | 79/M    | ICU                        | VAP               | 32                       | 8 g LD<br>16 g/day CI | 458.3                     | No                                 | CAZ-AVI<br>2.5 g q8h CI     | 8                            | $14.9$ (avibactam $fC_{SS}$ 27.6 mg/L)                                 | Reduction<br>1.25 g q8h CI          | Optimal               | Yes                            | Yes              |

AUC: area-under-the-curve; CAZ-AVI: ceftazidime-avibactam; CI: continuous infusion; C<sub>min</sub>: trough concentrations; C<sub>ss</sub>: steady-state concentration; EI: extended infusion; HAP: hospital-acquired pneumonia; ICU: intensive care unit; LD: loading dose; MIC: minimum inhibitory concentration; PK/PD: pharmacokinetic/pharmacodynamic; VAP: ventilator-associated pneumonia. Green box: achievement of optimal PK/PD targets (or microbiological eradication for microbiological outcome); yellow box: achievement of quasi-optimal PK/PD targets (or microbiological failure for microbiological outcome).



#### **RESEARCH SUMMARY**

### Ceftobiprole for Treatment of Complicated Staphylococcus aureus Bacteremia

Holland TL et al. DOI: 10.1056/NEJMoa2300220

#### RESULTS

Efficacy: Among evaluable patients, ceftobiprole was found to be noninferior to daptomycin with respect to overall treatment success.

Safety: The proportion of patients with adverse events or with serious adverse events was similar in the two groups. Gastrointestinal adverse events occurred more often with ceftobiprole than with daptomycin.

#### CONCLUSIONS

In patients with complicated *S. aureus* bacteremia, ceftobiprole was noninferior to daptomycin with respect to overall treatment success at 70 days.

#### LIMITATIONS AND REMAINING QUESTIONS

- Definitive conclusions could not be made about the efficacy of ceftobiprole in patients with MRSA bacteremia, who accounted for approximately one fourth of the trial patients.
- More than 95% of the patients were White.
- Daptomycin was administered primarily at the FDAapproved dose of 6 mg/kg/day, which is lower than the dose sometimes used in clinical practice.







**89(15):** 1390-1401 dose sometimes used in clinical practice.

#### ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA



#### CLINICAL TRIAL

**Design:** A phase 3, multinational, double-blind, double-dummy, randomized trial assessed whether ceftobiprole would be noninferior to daptomycin for the treatment of complicated *S. aureus* bacteremia.

Intervention: 390 adults hospitalized with complicated *S. aureus* bacteremia were assigned to receive either ceftobiprole (500 mg) intravenously every 6 hours during the first 8 days and then every 8 hours thereafter or daptomycin (6–10 mg per kilogram of body weight) intravenously every 24 hours with optional aztreonam, plus matching placebo infusions. Maximum treatment durations ranged from 28 to 42 days. The primary efficacy outcome was overall treatment success at 70 days after randomization; success was defined as survival, a reduction in symptoms, *S. aureus* bloodstream clearance, absence of new *S. aureus* bacteremia–related complications, and no receipt of other potentially effective antibiotics.

#### N Engl J Med 2023 Oct 12; 389(15): 1390-1401

# OVERALL TREATMENT SUCCESS AT THE POST-BASELINE EVALUATION VISIT, ACCORDING TO PATIENT CHARACTERISTICS AT BASELINE (MODIFIED INTENTION-TO-TREAT ANALYSIS POPULATION).

| Subgroup                                              | <b>Ceftobiprole</b><br>no. of patients | <b>Daptomycin</b><br>s/total no. (%) | Percentage-Point Difference (95% CI)         |
|-------------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|
| All patients                                          | 132/189 (69.8)                         | 136/198 (68.7)                       | 2.0 (-7.1 to 11.1)                           |
| Age at written informed consent                       |                                        |                                      |                                              |
| 18 to <65 yr                                          | 98/131 (74.8)                          | 101/135 (74.8)                       | 0.6 (-9.8 to 10.9)                           |
| ≥65 yr                                                | 34/58 (59)                             | 35/63 (56)                           | 6.9 (-10.5 to 24.3)                          |
| Sex                                                   |                                        |                                      |                                              |
| Male                                                  | 93/128 (72.7)                          | 92/140 (65.7)                        | 8.0 (-2.8 to 18.8)                           |
| Female                                                | 39/61 <mark>(</mark> 64)               | 44/58 (76)                           | -11.3 (-27.7 to 5.1)                         |
| Baseline category of complicated S. aureus bacteremia |                                        |                                      |                                              |
| Soft-tissue infection                                 | 81/116 (69.8)                          | 80/121 (66.1)                        | 4.5 (-7.3 to 16.3)                           |
| S. aureus bacteremia excluding soft-tissue infection  | 51/73 (70)                             | 56/77 (73)                           | -1.7 (-15.9 to 12.6)                         |
| Osteoarticular infection                              | 23/32 (72)                             | 24/35 (69)                           | 2.9 (-19.7 to 25.6)                          |
| Abdominal abscess                                     | 18/26 (69)                             | 22/29 (76)                           | -9.7 (-33.3 to 13.9)                         |
| Hemodialysis                                          | 13/24 (54)                             | 15/25 (60)                           | -4.6 (-32.5 to 23.3)                         |
| Persistent S. aureus bacteremia                       | 8/16 (50)                              | 8/16 (50)                            | -0.0 (-35.9 to 35.9)                         |
| Infective endocarditis on right side of heart         | 10/15 <mark>(</mark> 67)               | 7/10 (70)                            | -6.6 (-40.1 to 27.0)                         |
| Baseline S. aureus infection                          |                                        |                                      |                                              |
| Methicillin-susceptible                               | 100/141 (70.9)                         | 97/146 (66.4)                        | 4.8 (-5.9 to 15.5)                           |
| Methicillin-resistant                                 | 31/45 (69)                             | 38/49 (78)                           | -8.3 (-25.3 to 8.6)                          |
| Previous antibiotic use                               |                                        |                                      |                                              |
| Yes                                                   | 92/139 (66.2)                          | 85/134 (63.4)                        | 2.9 (-8.4 to 14.2)                           |
| No                                                    | 40/50 <mark>(</mark> 80)               | 51/64 (80)                           | -0.2 (-15.0 to 14.6)                         |
| Trial cohort                                          |                                        |                                      |                                              |
| Cohort 1                                              | 68/97 (70)                             | 62/96 (65)                           | 7.6 (-5.6 to 20.8)                           |
| Cohort 2                                              | 64/92 (70)                             | 74/102 (72.5)<br>                    | -3.4 (-16.1 to 9.3)<br>45 -30 -15 0 15 30 45 |

Daptomycin Better Ceftobiprole Better



#### N Engl J Med 2023 Oct 12; 389(15): 1390-1401

### MIC distributions for Ceftobiprole, 2023-11-20

#### Antimicrobial: Ceftobiprole (Method: MIC)

|                                  | 0.002 | 0.004 | 0.008 | 0.016 | 0.03 | 0.06 | 0.125 | 0.25  | 0.5  | 1    | 2    | 4   | 8 | 16 | 32 | 64 | 128 | 256 | 512 | Distributions | Observations | (T)ECOFF | Confidence interval |
|----------------------------------|-------|-------|-------|-------|------|------|-------|-------|------|------|------|-----|---|----|----|----|-----|-----|-----|---------------|--------------|----------|---------------------|
| Staphylococcus aureus            | 0     | 0     | 0     | 1     | 0    | 95   | 313   | 10356 | 7881 | 5781 | 2262 | 119 | 1 | 3  | 0  | 0  | 0   | 0   | 0   | 10            | 26812        | 1        | 1 - 2               |
| Staphylococcus aureus ATCC 29213 | 0     | 0     | 0     | 0     | 0    | 0    | 0     | 1     | 14   | 1    | 0    | 0   | 0 | 0  | 0  | 0  | 0   | 0   | 0   | 1             | 16           | ID       |                     |
| Staphylococcus aureus MRSA       | 0     | 0     | 0     | 0     | 0    | 9    | 12    | 105   | 4276 | 8914 | 2398 | 147 | 1 | 3  | 0  | 0  | 0   | 0   | 0   | 14            | 15865        | 1        | 1 - 2               |
| Staphylococcus aureus MSSA       | 0     | 0     | 0     | 0     | 4    | 73   | 383   | 10118 | 5132 | 205  | 8    | 0   | 0 | 0  | 0  | 0  | 0   | 0   | 0   | 15            | 15923        | 1        | 1 - 2               |
| Staphylococcus capitis           | 0     | 0     | 0     | 4     | 31   | 40   | 52    | 16    | 17   | 24   | 2    | 0   | 0 | 0  | 0  | 0  | 0   | 0   | 0   | 4             | 186          | (0.25)   | 0.25 - 1            |
| Staphylococcus epidermidis       | 0     | 0     | 0     | 1     | 2    | 44   | 304   | 318   | 615  | 657  | 116  | 51  | 0 | 0  | 0  | 0  | 0   | 0   | 0   | 9             | 2108         | 1        | 0.25 - 1            |



https://mic.eucast.org/search/

#### **RESEARCH SUMMARY**

### Ceftobiprole for Treatment of Complicated Staphylococcus aureus Bacteremia

Holland TL et al. DOI: 10.1056/NEJMoa2300220

#### RESULTS

Efficacy: Among evaluable patients, ceftobiprole was found to be noninferior to daptomycin with respect to overall treatment success.

Safety: The proportion of patients with adverse events or with serious adverse events was similar in the two groups. Gastrointestinal adverse events occurred more often with ceftobiprole than with daptomycin.

#### CONCLUSIONS

In patients with complicated *S. aureus* bacteremia, ceftobiprole was noninferior to daptomycin with respect to overall treatment success at 70 days.

#### LIMITATIONS AND REMAINING QUESTIONS

- Definitive conclusions could not be made about the efficacy of ceftobiprole in patients with MRSA bacteremia, who accounted for approximately one fourth of the trial patients.
- More than 95% of the patients were White.
- Daptomycin was administered primarily at the FDAapproved dose of 6 mg/kg/day, which is lower than the dose sometimes used in clinical practice.







9(15): 1390-1401 dose sometimes used in clinical practice.

#### tobiprole would be noninferior to daptomycin for the treatment of complicated *S. aureus* bacteremia. **Intervention:** 390 adults hospitalized with complicated

*S. aureus* bacteremia were assigned to receive either ceftobiprole (500 mg) intravenously every 6 hours during the first 8 days and then every 8 hours thereafter or daptomycin (6–10 mg per kilogram of body weight) intravenously every 24 hours with optional aztreonam, plus matching placebo infusions. Maximum treatment durations ranged from 28 to 42 days. The primary efficacy outcome was overall treatment success at 70 days after randomization; success was defined as survival, a reduction in symptoms, *S. aureus* bloodstream clearance, absence of new *S. aureus* bacteremia–related complications, and no receipt of other potentially effective antibiotics.

Design: A phase 3, multinational, double-blind,

double-dummy, randomized trial assessed whether cef-

CLINICAL TRIAL

#### **Overall Success**

# POP PK/PD ANALYSIS FOR MAXIMIZING THE EFFECTIVENESS OF CEFTOBIPROLE IN THE TREATMENT OF SEVERE METHICILLIN-RESISTANT STAPHYLOCOCCAL INFECTIONS

Cojutti PG, Giuliano S, Pascale R, Angelini J, Tascini C, Viale P, Pea F. Microorganisms under review

#### DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF PATIENTS (N=132)

| Characteristic                     | Value               | Characteristic                                              | Value                             |
|------------------------------------|---------------------|-------------------------------------------------------------|-----------------------------------|
| Age (years)                        | 71.0 (61.8 - 79.0)  |                                                             |                                   |
| Gender (male/female)               | 86/46               | Patients with identified microbiological isolates, n (%)    | 80 (60.6)                         |
| Body weight (kg)                   | 73.5 (65.0 – 89.0)  | Ceftobiprole treatment                                      |                                   |
| BMI (kg/m <sup>2</sup> )           | 25.7 (22.5 - 30.1)  | Median dose (mg daily)                                      | 1500(1000 - 1500)                 |
| Serum creatinine (mg/dL)           | 0.90 (0.68 – 1.36)  | The last dose (ing daily)                                   |                                   |
| eGFR (mL/min/1.73 m <sup>2</sup> ) | 83.7 (50.5 - 101.7) | Trough concentration (mg/L)                                 | 7.6 (4.9 – 11.7)                  |
| Serum albumin (g/L)                | 3.1 (2.7 – 3.4)     | Length of treatment (days)                                  | 10.0 (2.0 - 81.0)                 |
| Type of infection, n (%)           |                     | Patients with co-administered antibiotics, n(%)             | 88 (66.7)                         |
| Hospital-acquired pneumonia        | 38 (28.8)           | Treatment outcome in assessable patients (n=126)            |                                   |
| Endocarditis                       | 27 (20.5)           | N. of patients with microbiological eradication             | 118 (96.7)                        |
| Bloodstream infection              | 22 (16.6)           | N. of patients with clinical cure                           | 88 (69.8)                         |
| Community-acquired pneumonia       | 20 (15.2)           | Data are presented as median (IQR) for continuous variables | and as number (%) for dichotomous |
| Bone and joint infections          | 9 (6.8)             | variables.                                                  |                                   |
| Skin and soft tissue infections    | 9 (6.8)             | eorit, estimated giomerular intration fate                  |                                   |
| Device-related infections          | 4 (3.0)             |                                                             |                                   |
| CNS infections                     | 3 (2.3)             |                                                             |                                   |



# POP PK/PD ANALYSIS FOR MAXIMIZING THE EFFECTIVENESS OF CEFTOBIPROLE IN THE TREATMENT OF SEVERE METHICILLIN-RESISTANT STAPHYLOCOCCAL INFECTIONS

Cojutti PG, Giuliano S, Pascale R, Angelini J, Tascini C, Viale P, Pea F. Microorganisms under review

CUMULATIVE FRACTION OF RESPONSE AGAINST THE EUCAST MIC DISTRIBUTION OF MRSA (N = 15865)

| Ceftobiprole dosages                 | MRSA          |              |  |  |  |  |  |  |
|--------------------------------------|---------------|--------------|--|--|--|--|--|--|
| and classes of eGFR                  | Quasi-optimal | Optimal      |  |  |  |  |  |  |
|                                      | PK/PD target  | PK/PD target |  |  |  |  |  |  |
| eGFR <30 mL/min/1.73m <sup>2</sup>   |               |              |  |  |  |  |  |  |
| 250 q12h EI                          | 95.9          | 58.2         |  |  |  |  |  |  |
| 250 q12h CI                          | 99.7          | 79.1         |  |  |  |  |  |  |
| 250 q8h EI*                          | 98.8          | 87           |  |  |  |  |  |  |
| 250 q8h CI*                          | 100           | 91.4         |  |  |  |  |  |  |
| eGFR 30-50 mL/min/1.73m <sup>2</sup> |               |              |  |  |  |  |  |  |
| 500 q12h EI                          | 98.6          | 78.4         |  |  |  |  |  |  |
| 500 q12h CI                          | 99.9          | 94.5         |  |  |  |  |  |  |
| 500 q8h EI*                          | 99.7          | 92.6         |  |  |  |  |  |  |
| 500 q8h CI*                          | 100           | 98.4         |  |  |  |  |  |  |
| eGFR 51-80 mL/min/1.73m <sup>2</sup> |               |              |  |  |  |  |  |  |
| 500 q8h EI                           | 99.5          | 83.2         |  |  |  |  |  |  |
| 500 q8h CI                           | 100           | 96.8         |  |  |  |  |  |  |
| 500 q6h EI*                          | 99.4          | 93.4         |  |  |  |  |  |  |
| 500 q6h CI*                          | 100           | 98.9         |  |  |  |  |  |  |

#### Optimal PK/PD target fCmin/MIC (EI) or fCss/MIC (CI) ratio ≥4

| Ceftobiprole dosages                | MRSA          |                |  |  |  |  |  |
|-------------------------------------|---------------|----------------|--|--|--|--|--|
| and classes of eGFR                 | Quasi-optimal | Optimal        |  |  |  |  |  |
|                                     | PK/PD target  | PK/PD target   |  |  |  |  |  |
| eGFR 81-130 mL/min/1.73m2           | 2             |                |  |  |  |  |  |
| 500 q8h EI                          | 97.2          | 66.0           |  |  |  |  |  |
| 500 q8h CI                          | 100           | 90.5           |  |  |  |  |  |
| 500 q6h EI*                         | 99.4          | ₿5             |  |  |  |  |  |
| 500 q6h CI*                         | 100           | 96.5           |  |  |  |  |  |
| eGFR >130 mL/min/1.73m <sup>2</sup> |               |                |  |  |  |  |  |
| 500 q8h EI                          | 75.2          | 22.2           |  |  |  |  |  |
| 500 q8h CI                          | 99.2          | 66.7           |  |  |  |  |  |
| 500 q6h EI*                         | 89.2          | $\mathbf{X}_1$ |  |  |  |  |  |
| 500 q6h CI*                         | 99.8          | ₿ 3            |  |  |  |  |  |
| 500 q4h EI*                         | 98.4          | 72.2           |  |  |  |  |  |
| 500 q4h CI*                         | 100           | 92.5           |  |  |  |  |  |

\*Intensified dosages tested in different classes of eGFR

CI, 24h-continuous infusion; EI, 2h-extended infusion



- PK/PD is the most relevant factor for addressing correct use of the new antibiotics
- Deep-seated infections and/or challenging clinical conditions may require more aggressive PK/PD

target attainment

- Critical illness may significantly alter the pharmacokinetics of the new hydrophilic antibiotics
- Renal function must be evaluated daily in the critically ill patients for choosing the correct

dosage

