

Meropenem-Vaborbactam

Francesco G. De Rosa

AOU Città della Salute & Scienza Fellow, Infectious Diseases Society of America

Consultant/Advisory Board/Speaker fees

- Pfizer, MSD, Angelini, Thermo Fisher, Shionogi, BioTest, Nordic Pharma, InfectoPharma
- Gilead Sciences, GSK, Hikma, Advanz, Basilea
- Tillots, Menarini, Correvio
- Research grant
 - Pfizer, MSD, Shionogi

Background

- Epidemiology of MDR
- Carbapenemases: CPE & CRE
- KPC and the Lesson from Ceftazidime-avibactam
 - Monotherapy Vs. Combination
 - Primary Vs. secondary resistance
 - Dosage in specific settings
 - ECMO, VAP, CVVH
 - Sparing regimens
- Vaborbactam designed on KPC enzymes

Meropenem-Vaborbactam Activity Vs. MDR Enterobacterales, Including Carbapenem-Resistant Isolates Shortridge D et al. Microbiol Spectr. 2023 Feb 14

• 1,697 MDR Enterobacterales

- 31 U.S. medical centers in 2016 to 2020
- CLSI methodology with broth dilution
- Whole-genome sequencing done MIC >2 mg/L for imi or mero

• 222 CRE isolates (13.1%)

- KPC = 81.1%

- NDM (n = 7), VIM (n = 3)
- OXA-48-like (n = 4) carbapenemases
- − 29 CRE isolates (13.1%) → No detected carbapenemases

^{99%} sensitive ot mer/vab

Meropenem-Vaborbactam Activity Vs. MDR Enterobacterales, Including Carbapenem-Resistant Isolates Shortridge D et al. Microbiol Spectr. 2023 Feb 14

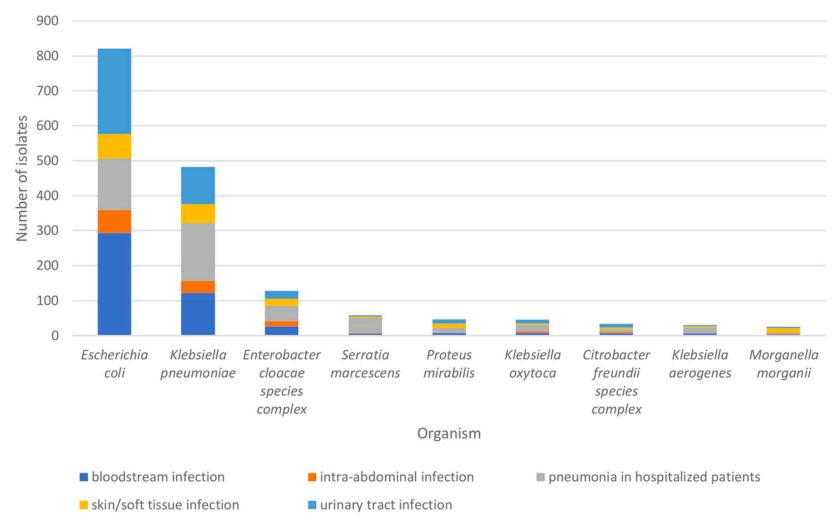


FIG 1 Species with >10 isolates, according to infection type.

Meropenem-Vaborbactam Activity Vs. MDR Enterobacterales, Including Carbapenem-Resistant Isolates Shortridge D et al. Microbiol Spectr. 2023 Feb 14

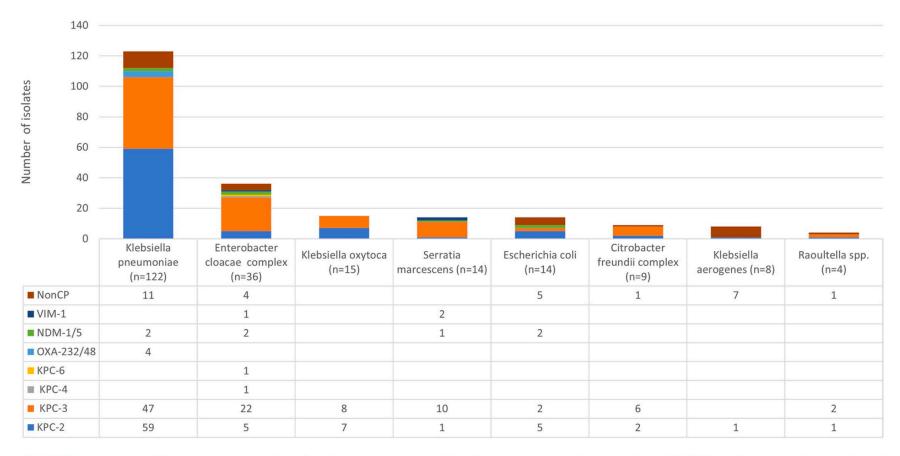


FIG 2 CRE strains according to species (number of each organism is shown), carbapenemases produced, and nonCP CRE. One K. pneumoniae isolate had both OXA-232 and NDM-1. No other isolates contained more than one carbapenemase.

Efficacy of ceftazidime-avibactam, mer-vab & imi-rel Combinations Vs. CPE in Switzerland (2018-20) Nordmann P et al. Eur J Clin Microbiol Infect Dis. 2023 Sep;42(9):1145-1152

• 150 clinical isolates of CPE

- Klebsiella pneumoniae (n = 61, 40.3%) and Escherichia coli (n = 53, 35.3%)
- Carbapenemases distribution:

– KPC-like	32%
– OXA-48-like	32%
– NDM-like	24%
 Combinations of carbapenemases 	10%
 VIM-1 & IMI-1 producers 	n = 2/1, respectively
Strain sensitivities:	
 Mer-vab: 	77%
– CAZ-AVI	63%
– Imi-rel	62%

Vaborbactam (RPX7009)

Hecker SJ et al J Med Chem 2015

• Specific design for KPC beta-lactamases

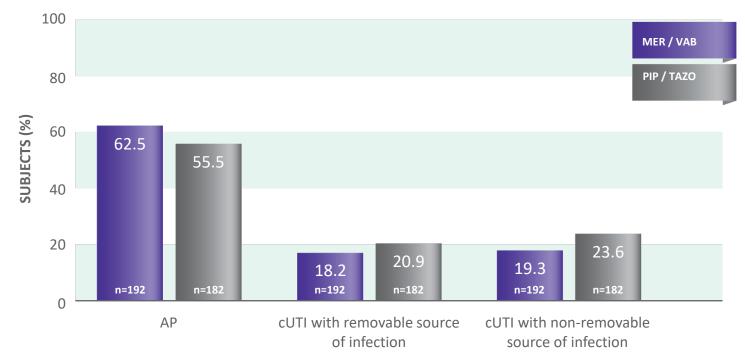
- No antibacterial activity alone

MIC, 64 g/ml

• Livermore DM et al JAC 20213

• Cyclic boronic acid pharmacophore: first in class

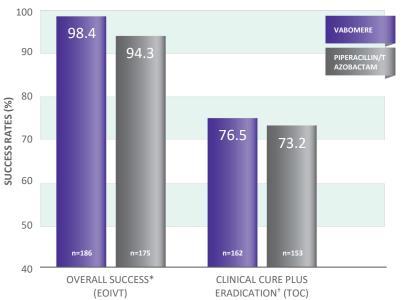
- Inhibition of serine-lactamases of class A & C
- KPC, IMI, SME, NMC-A, BKC-1, and FR-1 carbapenemases
- No inhibition of mammalian serine proteases


Affinity of boronates for active sites of beta-lactamases

- Covalent complex between the catalytic serine side chain and the boronate moiety
- Mimicking the tetrahedral transition state of acylation/deacylation reaction complex

• Different structure from diazabicyclooctanes:

Avibactam and relebactam


TANGO-I: Baseline Characteristics by Infection Type (m-MITT)

AP=acute pyelonephritis; m-MITT=microbiologic modified intent-to-treat population.

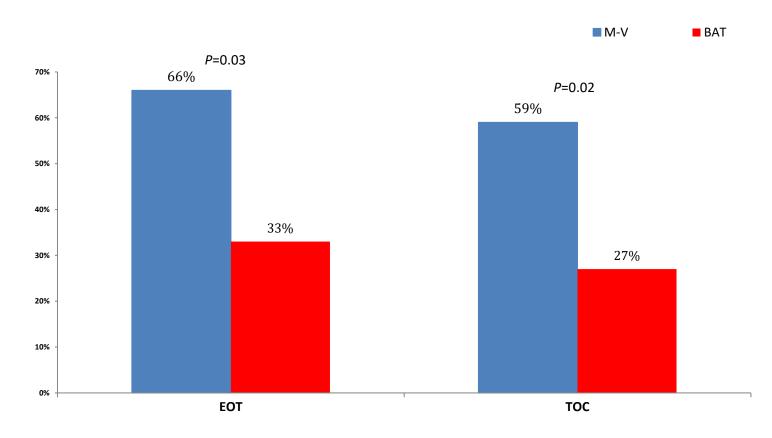
Kaye KS, et al. JAMA. 2018;319(8):788-799 (Supplementary Material).

MER / VAB Demonstrated an Overall Success Rate of 98.4% vs 94.3% with Piperacillin/Tazobactam¹

CLINICAL AND MICROBIOLOGICAL RESPONSE RATES (m-MITT)¹

PRIMARY ENDPOINT: Overall success at the EOIVT (composite of both a clinical outcome of cure or improvement and a microbiologic outcome of eradication) in the m-MITT population.^{1,2} Clinical and microbiological response was also assessed at the TOC visit (approximately 7 days after completion of treatment) in the m-MITT population and required both a clinical outcome of cure and a microbiological outcome of eradication.

*EOIVT includes patients with organisms resistant to piperacillin/tazobactam at baseline. [†]TOC visit excludes patients with organisms resistant to piperacillin/tazobactam at baseline in both arms. EOIVT=end of IV treatment; TOC=test of cure visit.


1. VABOMERE [package insert]. Lincolnshire, IL: Melinta Therapeutics, Inc. 2. Data on file. Lincolnshire, IL: Melinta Therapeutics, Inc.; 2019.

Meropenem–Vaborbactam Vs. Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial Wunderink R et al *Infect Dis Ther (2018) 7:439–455*

- Phase 3, open label, randomized controlled trial
- 77 patients with confirmed/ suspected CRE infection
 - Bacteremia, HAP/VAP, complicated intra-abdominal infection, complicated urinary tract infection/acute pyelonephritis
- 47 patients with confirmed CRE infection
 - Primary analysis population
 - Microbiologic-CREmodified intent-to-treat, mCRE-MITT
- Eligible patients were randomized 2:1
 - MER / VAB or BAT mono/combination therapy with polymyxins, carbapenems, aminoglycosides, tigecycline; or ceftazidime avibactam alone
 - Efficacy endpoints: clinical cure, Day-28 all-cause mortality, microbiologic cure, and overall success (clinical cure + microbiologic eradication)

Meropenem–Vaborbactam Vs. Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial Wunderink R et al *Infect Dis Ther (2018) 7:439–455*

Higher clinical cure rates at end of therapy (EOT) and test of cure (TOC)

TANGO II: Day 28 All-Cause Mortality All Infection Types (mCRE-MITT)

Wunderink R et al Infect Dis Ther (2018) 7:439–455

Endpoint/Statistics	MV N=32 n, (%)	Best Available Therapy N=15 n, (%)	Absolute Percent Difference (MV-BAT)	Relative Percent Difference [(MV-BAT)/BAT]
All-Cause Mortality Rate Day 28	5 (15.6)	5 (33.3)	-17.7	-53.2
Subjects Censored*	27 (84.4)	10 (66.7)		
Kaplan-Meier Estimate (95%CI)	15.6 (6.8 to 33.5)	33.3 (15.4 to 62.5)		

Efficacy and Safety of Meropenem–Vaborbactam Versus Best Available Therapy for the Treatment of Carbapenem-Resistant *Enterobacteriaceae* Infections in Patients Without Prior Antimicrobial Failure: A Post Hoc Analysis

Matteo Bassetti · Daniele Roberto Giacobbe · Niki Patel ·

Glenn Tillotson • Jill Massey

Received: March 6, 2019

© The Aut

Efficacy endpoints (mCRE- MITT)	Meropenem-vaborbactam $(n = 23)$	Best available therapy (<i>n</i> = 15)	Absolute difference (95% CI)
Clinical cure at TOC	16 (69.6)	4 (26.7)	+ 42.9 (+ 13.7 to + 72.1)
Clinical cure at EOT	19 (82.6)	5 (33.3)	+ 49.3 (+ 20.8 to + 77.7)
Microbiologic cure ^a at EOT	19 (82.6)	6 (40.0)	+ 42.6 (+ 13.4 to + 71.8)
Microbiologic cure ^a at TOC	16 (69.6)	5 (33.3)	+ 36.2 (+ 5.9 to + 66.6)
Day 28 mortality	1 (4.3)	5 (33.3)	- 29.0 (- 54.3 to - 3.7)

Table 2 Efficacy results in patients without prior antimicrobial failure in the mCRE-MITT population

CI confidence intervals, *EOT* end of therapy, *mCRE-MITT* microbiologic carbapenem-resistant *Enterobacteriaceae* modified intent-to-treat, *TOC* test of cure

^a Microbiologic cure was defined as microbial eradication or presumed eradication

Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant *Enterobacteriaceae* Infections

- 131 patients; 105 w C/A VS 26 w M/V
- Overall, 53/105 (40.5%) had BSI.
- Most common sources of BSI: UTI (35.1%) in the C/A and the abdomen (37.5%) in the M/V.
- COMBO therapy: 61.0% pts in C/A VS 15.4% in M/V (p= 0.01).
- No differences in clinical cure and overall mortality.

	Ceftazidime-avibactam group ($n = 105$)	Meropenem-vaborbactam group ($n = 26$)	P value
No. of recurrences of CRE infection (%)	15 (14.3)	3 (11.5)	1.0
No. of increases in study drug MIC in mg/liter (%)	6 (40.0)	0	0.51
No. of emergences of study drug resistance (%)	3 (20.0)	0	1.0

Ackley R et al, AAC 2021

Avoid R in vivo

Real-Life Use of Meropenem/Vaborbactam in Turin Hospital City of Health & Science – 2022 -

94 patiens treated with mero/vabor:

- Year 2021: 36 pts
- Year 2022: 58 pts
- (Year 2023: 32 pts)

Among 58 pts (year 2022):

37.9% (22) pts targeted therapy, among them 45.5% (10) pts CAZ/AVI R

- 27.2%(6) HAP/VAP, 9.1% (2) BSI + HAP/VAP,
 22.7% (5) BSI, 4.5% (1) CVC-associated BSI,
 9.1% (2) UTI, 18.2% (4) IAI
- 36.4% (8) non-rectal carriers
- 67.2% (39): pre-emptive in rectal carriers
- 20.7% (12): empirical for severe infections

58 patients, 2022	N (%)
Pre-emptive in rectal carriers	39 (67.2)
Empirical therapy for critical conditions	12 (20.7)
Targeted therapy	22 (37.9)
Targeted therapy, type of infection HAP/VAP BSI + HAP/VAP BSI CVC-associated BSI UTI IAI	6 (27.2) 2 (9.1) 5 (22.7) 1 (4.5) 2 (9.1) 4 (18.2)
Targeted therapy, microbiology CAZ/AVI resistant isolate	10 (45.4)
Targeted therapy, rectal carriage	8 (36.4)

Effective Durations of Therapy for CRE Bloodstream Infections: A Multicenter Observational Study Soto CL et al. Clin Infect Dis 2023 Aug 16

• 183 adults with CRE-BSI, 24 US hospitals

Short-courses of active therapy

- 7-10 days, median 9 days
- Prolonged courses of active therapy
 - 14-21 days, median 14 days

Similar odds, propensity-score-weighted analysis

- Recurrent bacteremia or death within 30 days

Clinical Efficacy & Safety of Novel Antibiotics for cUTIs: Systematic Review & Meta-analysis of Randomized Controlled Trials Hung KC et al Int J Antimicrob Agents 2023 Jul;62(1):106830

- TOC, New drugs Vs. comparators
- Higher CCR in 11 RCTs, 3514 participants:
 - 83.6% vs 80.3%, OR 1.37, 95% Cl 1.08-1.74, P=0.01, l2=35%
- Higher microbiological eradication rate, 4347 participants
 - 77.7% vs 67.2%, OR 1.79, 95% CI 1.46-2.20, P<0.00001
- No significant difference at TOC:
 - CCR: OR 0.96, P=0.81, I2=4%
 - Risk of treatment-emergent AEs (OR 0.95, P=0.57, I2=51%)
- Results of TSA:
 - Robust evidence regarding microbiological eradication rate & TEAEs
 - CCR at TOC and EOT remained inconclusive
- → Novel antibiotics may be more effective in cUTIs

CCR: clinical cure rate; TOC: test of cure; AE: adverse event; TSA: trial sequential analysis

Meropenem-vaborbactam Restoration of First-line Drug Efficacy & Comparison of mer-vab-moxi Vs. BPaL MDR-TB Regimen Singh S et al Int J Antimicrob Agents 2023 Sep 17

- Resistance mutations to Rifa, INH & CEFs detected by WGS
 - Mer-vab MIC of *M. tuberculosis* H37Rv / 16D = 2 mg/L & > 128 mg/L, respectively
 - Relebactam and vaborbactam improved potency and efficacy of mero in STKs

Mer-vab-moxi combination

- Most effective and outranking bedaquiline and pretomanid
- Mer-vab-moxi & BPaL
 - Highest K (log10 CFU/mL/day) in the hollow fiber model system of TB
 - 0.31 (95% CI 0.17-0.58) & 0.34 (95% CI 0.21-0.56)
- Mer-vab-moxi-linezolid → antagonism
- → Mer-vab may restore INH & Rifa efficacy Vs. MDR-TB
- → Mer-vab-moxi as a potential new MDR-TB regimen

CEFs: cephalosporins; WGS: whole genome sequencing; STKs: static kill studies; K: kill rate costant; BPaL: bedaquiline-pretonamid-linezolid

Conclusions

- Pan-KPC agent: meropenem vaborbactam
- Treatment strategies:
 - Targeted treatment: CRE
 - Pre-emptive or empiric strategies in patients colonized by CRE
 - Caz-avi sparing
- "Differential" stewardship programs for the new BL/BLI
 - Specific considerations for other drugs & MDR bacteria
- Local Microbiology & CRE / CPE